1
0
Fork 0
mirror of https://github.com/TransparentLC/opencl_vanity_gpg.git synced 2025-10-20 15:24:08 +00:00

chore: clippy

This commit is contained in:
GZTime 2025-01-08 23:19:16 +08:00
parent f53ffd1c60
commit e224d84f1c
No known key found for this signature in database
GPG key ID: 373640C748EA3E19
2 changed files with 237 additions and 178 deletions

View file

@ -1,21 +1,12 @@
mod vanity_gpg;
use vanity_gpg::{CipherSuite, VanitySecretKey};
use clap::Parser;
use std::{
fs,
io,
io::Write,
mem,
path::Path,
sync::mpsc::channel,
thread,
time::Instant,
};
use log::{debug, info, warn};
use ocl::{Buffer, Device, Platform, ProQue};
use rand::thread_rng;
use pgp::types::PublicKeyTrait;
use log::{warn, info, debug};
use rand::thread_rng;
use std::{fs, io, io::Write, mem, path::Path, sync::mpsc::channel, thread, time::Instant};
use vanity_gpg::{CipherSuite, VanitySecretKey};
#[derive(Parser, Debug)]
#[command(version, about, long_about = None)]
@ -44,7 +35,9 @@ struct Args {
/// OpenCL kernel function for uint h[5] for matching fingerprints
/// Ignore the pattern and no estimate is given if this has been set
///
/// Example:
///
/// * (h[4] & 0xFFFF) == 0x1234 outputs a fingerprint ends with 1234
/// * (h[0] & 0xFFFF0000) == 0xABCD0000 outputs a fingerprint starts with ABCD
#[arg(short, long, verbatim_doc_comment)]
@ -87,17 +80,19 @@ struct Args {
device_list: bool,
}
/// 手动进行SHA-1的填充操作
/// SHA-1的一个数据块是512 bit因此输出的Vec<u32>长度是16的倍数
/// Do SHA-1 padding manually
/// A SHA-1 block is 512 bit, so the output Vec<u32> length is a multiple of 16
fn manually_prepare_sha1(hashdata: Vec<u8>) -> Vec<u32> {
// 填充后的长度
// 用80 00 ...填充到448 mod 512 bit即56 mod 64 bytes加上u64的8 bytes后长度是64的倍数
// Length after padding
// Fill with 0x80 0x00 ... to 448 mod 512 bit, which is 56 mod 64 bytes
// plus u64's 8 bytes, the length is a multiple of 64
let padded_length = hashdata.len() + (64 - ((hashdata.len() + 8) % 64)) + 8;
let mut result_u8 = Vec::with_capacity(padded_length);
result_u8.extend_from_slice(&hashdata);
result_u8.push(0x80);
result_u8.resize(padded_length, 0);
// 需要把Vec<u8>直接转换成Vec<u32>
// convert Vec<u8> to Vec<u32>
// https://stackoverflow.com/questions/49690459/converting-a-vecu32-to-vecu8-in-place-and-with-minimal-overhead
let mut result_u32 = unsafe {
let ptr = result_u8.as_mut_ptr() as *mut u32;
@ -106,11 +101,13 @@ fn manually_prepare_sha1(hashdata: Vec<u8>) -> Vec<u32> {
mem::forget(result_u8);
Vec::from_raw_parts(ptr, length, capacity)
};
// assert_eq!(result_u32.len() % 16, 0);
// SHA-1的word和length使用大端序
for i in 0..result_u32.len() {
result_u32[i] = result_u32[i].to_be();
// SHA-1 uses big-endian words and length
for pos in &mut result_u32 {
*pos = pos.to_be();
}
let bit_length = hashdata.len() * 8;
result_u32[padded_length / 4 - 1] = (bit_length) as u32;
result_u32[padded_length / 4 - 2] = (bit_length >> 32) as u32;
@ -123,7 +120,8 @@ fn parse_pattern(pattern: String) -> (String, f64) {
_ => panic!("Invalid pattern"),
};
let mut parts: Vec<String> = vec![];
// 处理0-9A-F
// Handle fixed 0-9A-F
let mut fixed_pos_count: usize = 0;
for i in 0..=4 {
let mut mask = String::new();
@ -145,8 +143,10 @@ fn parse_pattern(pattern: String) -> (String, f64) {
parts.push(format!("(h[{i}] & 0x{mask}) == 0x{value}"));
}
}
// 处理通配符G-Z
let mut wildcard_pos_all: [Vec<usize>; (b'Z' - b'G' + 1) as usize] = std::default::Default::default();
// Handle wildcard G-Z
let mut wildcard_pos_all: [Vec<usize>; (b'Z' - b'G' + 1) as usize] =
std::default::Default::default();
for (i, wildcard) in pattern.chars().enumerate() {
if ('G'..='Z').contains(&wildcard) {
wildcard_pos_all[((wildcard as u8) - b'G') as usize].push(i);
@ -179,25 +179,36 @@ fn parse_pattern(pattern: String) -> (String, f64) {
wildcard_pos_count += wildcard_pos.len() - 1;
}
}
let filter = if parts.len() != 0 {
let filter = if !parts.is_empty() {
parts.join(" && ")
} else {
String::from("true")
};
(filter, (16f64).powi((fixed_pos_count + wildcard_pos_count) as i32))
(
filter,
(16f64).powi((fixed_pos_count + wildcard_pos_count) as i32),
)
}
fn format_number(v: impl Into<f64>) -> String {
match Into::<f64>::into(v) {
// v if v >= 1e9f64 => { return format!("{:.02}g", v / 1e9f64); },
v if v >= 1e6f64 => { return format!("{:.02}m", v / 1e6f64); },
v if v >= 1e3f64 => { return format!("{:.02}k", v / 1e3f64); },
v => { return format!("{v:.02}"); },
v if v >= 1e6f64 => {
format!("{:.02}m", v / 1e6f64)
}
v if v >= 1e3f64 => {
format!("{:.02}k", v / 1e3f64)
}
v => {
format!("{v:.02}")
}
}
}
fn main() -> Result<(), Box<dyn std::error::Error>> {
env_logger::Builder::from_env(env_logger::Env::default().filter_or(env_logger::DEFAULT_FILTER_ENV, "info"))
env_logger::Builder::from_env(
env_logger::Env::default().filter_or(env_logger::DEFAULT_FILTER_ENV, "info"),
)
.format_indent(None)
.init();
@ -222,34 +233,30 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
};
debug!("{:?}", &args);
let device_list: Vec<(Platform, Device)> = Platform::list()
let device_list: Vec<(Platform, Device)> =
Platform::list()
.iter()
.rfold(
Vec::new(),
|mut list, platform| {
match Device::list_all(platform) {
Ok(devices) => {
let mut devices = devices
.iter()
.map(|device| (*platform, *device))
.collect();
.rfold(Vec::new(), |mut list, platform| {
if let Ok(devices) = Device::list_all(platform) {
let mut devices = devices.iter().map(|device| (*platform, *device)).collect();
list.append(&mut devices);
},
Err(_) => {},
}
list
},
);
});
if args.device_list {
for (index, (platform, device)) in device_list.iter().enumerate() {
info!("Device #{} - {}", index, format!(
info!(
"Device #{} - {}",
index,
format!(
"{} ({}, MaxWorkGroupSize={}, MaxWorkItemSizes={}, MaxWorkItemDimensions={})",
device.name()?,
platform.name()?,
device.info(ocl::core::DeviceInfo::MaxWorkGroupSize)?,
device.info(ocl::core::DeviceInfo::MaxWorkItemSizes)?,
device.info(ocl::core::DeviceInfo::MaxWorkItemDimensions)?,
));
)
);
}
return Ok(());
}
@ -274,10 +281,11 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
info!(
"You will get vanity keys created after {}",
chrono::Utc::now()
.checked_sub_signed(chrono::TimeDelta::seconds((dimension * iteration) as i64)).unwrap()
.checked_sub_signed(chrono::TimeDelta::seconds((dimension * iteration) as i64))
.unwrap()
.to_rfc3339_opts(chrono::SecondsFormat::Millis, true),
);
if let None = args.output {
if args.output.is_none() {
if args.no_secret_key_logging {
warn!("No output dir given and you disabled secret key logging. You have no chance to save generated vanity keys.");
} else {
@ -291,7 +299,7 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
Some(pattern) => {
let (filter, estimate) = parse_pattern(pattern);
(filter, Some(estimate))
},
}
None => panic!("No filter or pattern given"),
},
};
@ -300,7 +308,9 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut rng = thread_rng();
match args.cipher_suite {
CipherSuite::RSA2048 | CipherSuite::RSA3072 | CipherSuite::RSA4096 => warn!("Generating RSA vanity keys is not recommended. Too slow!"),
CipherSuite::RSA2048 | CipherSuite::RSA3072 | CipherSuite::RSA4096 => {
warn!("Generating RSA vanity keys is not recommended. Too slow!")
}
_ => (),
};
@ -308,13 +318,16 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut hashdata = manually_prepare_sha1(vanity_key.hashdata());
let pro_que = ProQue::builder()
.src(std::include_str!("shader.cl").replace(
.src(
std::include_str!("shader.cl").replace(
"#define __INJECTS__",
&[
format!("#define FILTER(h) ({filter})"),
format!("#define CHUNK ({})", hashdata.len() / 16),
].join("\n"),
))
]
.join("\n"),
),
)
.device(device)
.dims(dimension)
.build()?;
@ -341,21 +354,27 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
.queue(pro_que.queue().clone())
.len(hashdata.len())
.copy_host_slice(&hashdata)
.build().unwrap();
.build()
.unwrap();
let kernel = pro_que
.kernel_builder("vanity_sha1")
.arg(&buffer_hashdata)
.arg(&buffer_result)
.arg(iteration as u64)
.build().unwrap();
.build()
.unwrap();
unsafe { kernel.enq().unwrap(); }
unsafe {
kernel.enq().unwrap();
}
buffer_result.read(&mut vec).enq().unwrap();
tx_result.send(match vec[0] {
tx_result
.send(match vec[0] {
0 => None,
x => Some(x),
}).unwrap();
})
.unwrap();
}
debug!("OpenCL thread quit");
});
@ -363,7 +382,8 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
loop {
debug!("Send key to OpenCL thread");
tx_hashdata.send(hashdata)?;
let vanity_key_next = VanitySecretKey::new(args.cipher_suite, args.user_id.clone(), &mut rng);
let vanity_key_next =
VanitySecretKey::new(args.cipher_suite, args.user_id.clone(), &mut rng);
let hashdata_next = manually_prepare_sha1(vanity_key_next.hashdata());
debug!("Receive result from OpenCL thread");
@ -399,8 +419,7 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
io::stdout().flush()?;
}
match vanity_timestamp {
Some(vanity_timestamp) => {
if let Some(vanity_timestamp) = vanity_timestamp {
vanity_key.edit_timestamp(vanity_timestamp, &mut rng);
if args.no_secret_key_logging {
info!("Get a vanity key!");
@ -409,12 +428,22 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
}
info!(
"Created at: {} ({})",
vanity_key.secret_key.created_at().to_rfc3339_opts(chrono::SecondsFormat::Millis, true),
vanity_key
.secret_key
.created_at()
.to_rfc3339_opts(chrono::SecondsFormat::Millis, true),
vanity_key.secret_key.created_at().timestamp(),
);
info!("Fingerprint #0: {}", hex::encode_upper(vanity_key.secret_key.fingerprint().as_bytes()));
info!(
"Fingerprint #0: {}",
hex::encode_upper(vanity_key.secret_key.fingerprint().as_bytes())
);
for (i, subkey) in vanity_key.secret_key.secret_subkeys.iter().enumerate() {
info!("Fingerprint #{}: {}", i + 1, hex::encode_upper(subkey.fingerprint().as_bytes()));
info!(
"Fingerprint #{}: {}",
i + 1,
hex::encode_upper(subkey.fingerprint().as_bytes())
);
}
match estimate {
Some(estimate) => info!(
@ -433,17 +462,19 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
}
if let Some(ref output_dir) = args.output {
fs::write(
Path::new(output_dir).join(format!("{}-sec.asc", hex::encode_upper(vanity_key.secret_key.fingerprint().as_bytes()))),
Path::new(output_dir).join(format!(
"{}-sec.asc",
hex::encode_upper(vanity_key.secret_key.fingerprint().as_bytes())
)),
vanity_key.to_armored_string()?,
).unwrap();
)
.unwrap();
}
if args.oneshot {
break;
}
hashed = 0;
start = Instant::now();
},
None => {},
}
if let Some(timeout) = args.timeout {
if elapsed > timeout {

View file

@ -1,34 +1,24 @@
use byteorder::{BigEndian, ByteOrder};
use clap::ValueEnum;
use byteorder::{ByteOrder, BigEndian};
use rand::{Rng, CryptoRng};
use log::debug;
use pgp::{
composed::{key::SecretKeyParamsBuilder, KeyType},
crypto::{
hash::HashAlgorithm,
sym::SymmetricKeyAlgorithm,
ecc_curve::ECCCurve,
},
ser::Serialize,
crypto::{ecc_curve::ECCCurve, hash::HashAlgorithm, sym::SymmetricKeyAlgorithm},
packet::KeyFlags,
types::{
CompressionAlgorithm,
PublicKeyTrait,
SecretKeyTrait,
KeyVersion,
},
Deserializable,
SecretKey,
SecretSubkey,
SignedSecretKey,
SubkeyParamsBuilder,
ser::Serialize,
types::{CompressionAlgorithm, KeyVersion, PublicKeyTrait, SecretKeyTrait},
Deserializable, SecretKey, SecretSubkey, SignedSecretKey, SubkeyParamsBuilder,
};
use rand::{CryptoRng, Rng};
use smallvec::smallvec;
use log::debug;
/// 获取用于计算一个私钥的指纹的数据
/// Get the data used to calculate the fingerprint of a private key
fn build_secret_key_hashdata(secret_key: impl SecretKeyTrait) -> Vec<u8> {
let mut hashdata = vec![0x99, 0, 0, 0x04, 0, 0, 0, 0];
BigEndian::write_u32(&mut hashdata[4..8], secret_key.created_at().timestamp() as u32);
BigEndian::write_u32(
&mut hashdata[4..8],
secret_key.created_at().timestamp() as u32,
);
hashdata.push(secret_key.algorithm().into());
secret_key.public_params().to_writer(&mut hashdata).unwrap();
let packet_len = (hashdata.len() - 3) as u16;
@ -36,7 +26,7 @@ fn build_secret_key_hashdata(secret_key: impl SecretKeyTrait) -> Vec<u8> {
hashdata
}
/// 需要被修改的密钥类型
/// Cipher Suites
#[derive(ValueEnum, Default, Clone, Copy, Debug)]
#[clap(rename_all = "kebab_case")]
pub enum CipherSuite {
@ -53,6 +43,7 @@ pub enum CipherSuite {
EcdsaP384,
EcdsaP521,
}
pub struct VanitySecretKey {
pub cipher_suite: CipherSuite,
pub secret_key: SignedSecretKey,
@ -92,10 +83,13 @@ impl VanitySecretKey {
secret_key_params_builder
.key_type(KeyType::EdDSALegacy)
.subkey(subkey_params_builder.build().unwrap());
},
CipherSuite::EcdhP256 | CipherSuite::EcdsaP256 |
CipherSuite::EcdhP384 | CipherSuite::EcdsaP384 |
CipherSuite::EcdhP521 | CipherSuite::EcdsaP521 => {
}
CipherSuite::EcdhP256
| CipherSuite::EcdsaP256
| CipherSuite::EcdhP384
| CipherSuite::EcdsaP384
| CipherSuite::EcdhP521
| CipherSuite::EcdsaP521 => {
let curve = match cipher_suite {
CipherSuite::EcdhP256 | CipherSuite::EcdsaP256 => ECCCurve::P256,
CipherSuite::EcdhP384 | CipherSuite::EcdsaP384 => ECCCurve::P384,
@ -109,7 +103,7 @@ impl VanitySecretKey {
secret_key_params_builder
.key_type(KeyType::ECDSA(curve.clone()))
.subkey(subkey_params_builder.build().unwrap());
},
}
CipherSuite::RSA2048 | CipherSuite::RSA3072 | CipherSuite::RSA4096 => {
let bits = match cipher_suite {
CipherSuite::RSA2048 => 2048,
@ -120,13 +114,15 @@ impl VanitySecretKey {
secret_key_params_builder
.key_type(KeyType::Rsa(bits))
.can_encrypt(true);
},
}
}
let secret_key_params = secret_key_params_builder.build().unwrap();
let secret_key = secret_key_params
.generate(&mut rng).unwrap()
.sign(&mut rng, || String::new()).unwrap();
.generate(&mut rng)
.unwrap()
.sign(&mut rng, String::new)
.unwrap();
assert_eq!(secret_key.version(), KeyVersion::V4);
Self {
@ -139,7 +135,7 @@ impl VanitySecretKey {
// RFC 9580 - OpenPGP
// 4. Packet Syntax
// https://datatracker.ietf.org/doc/html/rfc9580#name-packet-syntax
let mut secret_key_bytes = Vec::from(self.secret_key.to_bytes().unwrap());
let mut secret_key_bytes = self.secret_key.to_bytes().unwrap();
let mut packet_read_pos: usize = 0;
while packet_read_pos < secret_key_bytes.len() {
let cipher_type_byte = secret_key_bytes[packet_read_pos];
@ -148,15 +144,33 @@ impl VanitySecretKey {
let (size, size_length) = match cipher_type_byte >> 6 {
0b10 => match cipher_type_byte & 0b00000011 {
0 => (secret_key_bytes[packet_read_pos] as usize, 1),
1 => (BigEndian::read_u16(&secret_key_bytes[packet_read_pos..packet_read_pos + 2]) as usize, 2),
2 => (BigEndian::read_u32(&secret_key_bytes[packet_read_pos..packet_read_pos + 4]) as usize, 4),
1 => (
BigEndian::read_u16(&secret_key_bytes[packet_read_pos..packet_read_pos + 2])
as usize,
2,
),
2 => (
BigEndian::read_u32(&secret_key_bytes[packet_read_pos..packet_read_pos + 4])
as usize,
4,
),
3 => unimplemented!("Indeterminate length"),
_ => unreachable!(),
},
0b11 => match secret_key_bytes[packet_read_pos] {
x if x < 192 => (secret_key_bytes[packet_read_pos] as usize, 1),
x if x < 224 => ((((secret_key_bytes[packet_read_pos] - 192) as usize) << 8) + (secret_key_bytes[packet_read_pos + 1] as usize) + 192, 2),
x if x == 255 => (BigEndian::read_u32(&secret_key_bytes[packet_read_pos + 1..packet_read_pos + 5]) as usize, 5),
x if x < 224 => (
(((secret_key_bytes[packet_read_pos] - 192) as usize) << 8)
+ (secret_key_bytes[packet_read_pos + 1] as usize)
+ 192,
2,
),
255 => (
BigEndian::read_u32(
&secret_key_bytes[packet_read_pos + 1..packet_read_pos + 5],
) as usize,
5,
),
_ => unimplemented!("Partial body length"),
},
_ => unreachable!(),
@ -172,45 +186,59 @@ impl VanitySecretKey {
// 0x05 => Secret-Key Packet
// 0x07 => Secret-Subkey Packet
if [0x05, 0x07].contains(&packet_type) {
BigEndian::write_u32(&mut secret_key_bytes[packet_read_pos + 1..packet_read_pos + 5], timestamp);
BigEndian::write_u32(
&mut secret_key_bytes[packet_read_pos + 1..packet_read_pos + 5],
timestamp,
);
}
packet_read_pos += size;
}
// 只修改了时间因此这个key的签名是无效的
// The signature of this key is invalid because only the timestamp is modified
let edited_key = SignedSecretKey::from_bytes(&secret_key_bytes[..]).unwrap();
// 重新对key签名
// Re-sign the key
let mut subkey_flags = KeyFlags::default();
subkey_flags.set_encrypt_storage(true);
subkey_flags.set_encrypt_comms(true);
self.secret_key = SecretKey::new(
edited_key.primary_key,
edited_key.details.as_unsigned(),
edited_key.public_subkeys
edited_key
.public_subkeys
.iter()
.map(|e| e.as_unsigned())
.collect(),
edited_key.secret_subkeys
edited_key
.secret_subkeys
.iter()
.map(|e| SecretSubkey::new(e.key.clone(), subkey_flags))
.collect(),
).sign(&mut rng, || String::new()).unwrap();
// self.secret_key.verify().unwrap();
)
.sign(&mut rng, String::new)
.unwrap();
}
pub fn hashdata(&self) -> Vec<u8> {
match self.cipher_suite {
CipherSuite::Ed25519 |
CipherSuite::EcdsaP256 | CipherSuite::EcdsaP384 | CipherSuite::EcdsaP521 |
CipherSuite::RSA2048 | CipherSuite::RSA3072 | CipherSuite::RSA4096
=> build_secret_key_hashdata(&self.secret_key),
CipherSuite::Cv25519 |
CipherSuite::EcdhP256 | CipherSuite::EcdhP384 | CipherSuite::EcdhP521
=> build_secret_key_hashdata(&self.secret_key.secret_subkeys[0]),
CipherSuite::Ed25519
| CipherSuite::EcdsaP256
| CipherSuite::EcdsaP384
| CipherSuite::EcdsaP521
| CipherSuite::RSA2048
| CipherSuite::RSA3072
| CipherSuite::RSA4096 => build_secret_key_hashdata(&self.secret_key),
CipherSuite::Cv25519
| CipherSuite::EcdhP256
| CipherSuite::EcdhP384
| CipherSuite::EcdhP521 => {
build_secret_key_hashdata(&self.secret_key.secret_subkeys[0])
}
}
}
pub fn to_armored_string(&self) -> Result<String, pgp::errors::Error> {
self.secret_key.to_armored_string(pgp::ArmorOptions::default())
self.secret_key
.to_armored_string(pgp::ArmorOptions::default())
}
}