Merge pull request #7200 from Vexu/arr

Type coercion for pointers to anon literals
This commit is contained in:
Andrew Kelley 2021-01-11 16:09:28 -08:00 committed by GitHub
commit 025f1559a0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 334 additions and 21 deletions

View file

@ -14981,21 +14981,96 @@ static IrInstGen *ir_analyze_enum_literal(IrAnalyze *ira, IrInst* source_instr,
} }
static IrInstGen *ir_analyze_struct_literal_to_array(IrAnalyze *ira, IrInst* source_instr, static IrInstGen *ir_analyze_struct_literal_to_array(IrAnalyze *ira, IrInst* source_instr,
IrInstGen *value, ZigType *wanted_type) IrInstGen *struct_ptr, ZigType *actual_type, ZigType *wanted_type)
{
ir_add_error(ira, source_instr, buf_sprintf("TODO: type coercion of anon list literal to array"));
return ira->codegen->invalid_inst_gen;
}
static IrInstGen *ir_analyze_struct_literal_to_struct(IrAnalyze *ira, IrInst* source_instr,
IrInstGen *struct_operand, ZigType *wanted_type)
{ {
Error err; Error err;
IrInstGen *struct_ptr = ir_get_ref(ira, source_instr, struct_operand, true, false); if ((err = type_resolve(ira->codegen, wanted_type, ResolveStatusSizeKnown)))
if (type_is_invalid(struct_ptr->value->type))
return ira->codegen->invalid_inst_gen; return ira->codegen->invalid_inst_gen;
size_t array_len = wanted_type->data.array.len;
size_t instr_field_count = actual_type->data.structure.src_field_count;
assert(array_len == instr_field_count);
bool need_comptime = ir_should_inline(ira->old_irb.exec, source_instr->scope)
|| type_requires_comptime(ira->codegen, wanted_type) == ReqCompTimeYes;
bool is_comptime = true;
ZigType *elem_type = wanted_type->data.array.child_type;
// Determine if the struct_operand will be comptime.
ZigValue *elem_values = heap::c_allocator.allocate<ZigValue>(array_len);
IrInstGen **casted_fields = heap::c_allocator.allocate<IrInstGen *>(array_len);
IrInstGen *const_result = ir_const(ira, source_instr, wanted_type);
for (size_t i = 0; i < array_len; i += 1) {
TypeStructField *src_field = actual_type->data.structure.fields[i];
IrInstGen *field_ptr = ir_analyze_struct_field_ptr(ira, source_instr, src_field, struct_ptr,
actual_type, false);
if (type_is_invalid(field_ptr->value->type))
return ira->codegen->invalid_inst_gen;
IrInstGen *field_value = ir_get_deref(ira, source_instr, field_ptr, nullptr);
if (type_is_invalid(field_value->value->type))
return ira->codegen->invalid_inst_gen;
IrInstGen *casted_value = ir_implicit_cast(ira, field_value, elem_type);
if (type_is_invalid(casted_value->value->type))
return ira->codegen->invalid_inst_gen;
casted_fields[i] = casted_value;
if (need_comptime || instr_is_comptime(casted_value)) {
ZigValue *field_val = ir_resolve_const(ira, casted_value, UndefOk);
if (field_val == nullptr)
return ira->codegen->invalid_inst_gen;
field_val->parent.id = ConstParentIdArray;
field_val->parent.data.p_array.array_val = const_result->value;
field_val->parent.data.p_array.elem_index = i;
elem_values[i] = *field_val;
if (field_val->type->id == ZigTypeIdUndefined) {
elem_values[i].special = ConstValSpecialUndef;
}
} else {
is_comptime = false;
}
}
if (is_comptime) {
IrInstGen *const_result = ir_const(ira, source_instr, wanted_type);
const_result->value->data.x_array.special = ConstArraySpecialNone;
const_result->value->data.x_array.data.s_none.elements = elem_values;
return const_result;
}
IrInstGen *result_loc_inst = ir_resolve_result(ira, source_instr, no_result_loc(),
wanted_type, nullptr, true, true);
if (type_is_invalid(result_loc_inst->value->type) || result_loc_inst->value->type->id == ZigTypeIdUnreachable) {
return ira->codegen->invalid_inst_gen;
}
ZigType *elem_type_ptr = get_pointer_to_type(ira->codegen, elem_type, false);
for (size_t i = 0; i < array_len; i += 1) {
IrInstGen *index_val = ir_const(ira, source_instr, ira->codegen->builtin_types.entry_usize);
bigint_init_unsigned(&index_val->value->data.x_bigint, i);
IrInstGen *elem_ptr = ir_build_elem_ptr_gen(ira, source_instr->scope, source_instr->source_node,
result_loc_inst, index_val, false, elem_type_ptr);
IrInstGen *store_ptr_inst = ir_analyze_store_ptr(ira, source_instr, elem_ptr, casted_fields[i], true);
if (type_is_invalid(store_ptr_inst->value->type))
return ira->codegen->invalid_inst_gen;
}
heap::c_allocator.deallocate(elem_values, array_len);
heap::c_allocator.deallocate(casted_fields, array_len);
return result_loc_inst;
}
static IrInstGen *ir_analyze_struct_literal_to_struct(IrAnalyze *ira, IrInst* source_instr,
IrInstGen *struct_ptr, ZigType *actual_type, ZigType *wanted_type)
{
Error err;
if (wanted_type->data.structure.resolve_status == ResolveStatusBeingInferred) { if (wanted_type->data.structure.resolve_status == ResolveStatusBeingInferred) {
ir_add_error(ira, source_instr, buf_sprintf("type coercion of anon struct literal to inferred struct")); ir_add_error(ira, source_instr, buf_sprintf("type coercion of anon struct literal to inferred struct"));
return ira->codegen->invalid_inst_gen; return ira->codegen->invalid_inst_gen;
@ -15005,7 +15080,7 @@ static IrInstGen *ir_analyze_struct_literal_to_struct(IrAnalyze *ira, IrInst* so
return ira->codegen->invalid_inst_gen; return ira->codegen->invalid_inst_gen;
size_t actual_field_count = wanted_type->data.structure.src_field_count; size_t actual_field_count = wanted_type->data.structure.src_field_count;
size_t instr_field_count = struct_operand->value->type->data.structure.src_field_count; size_t instr_field_count = actual_type->data.structure.src_field_count;
bool need_comptime = ir_should_inline(ira->old_irb.exec, source_instr->scope) bool need_comptime = ir_should_inline(ira->old_irb.exec, source_instr->scope)
|| type_requires_comptime(ira->codegen, wanted_type) == ReqCompTimeYes; || type_requires_comptime(ira->codegen, wanted_type) == ReqCompTimeYes;
@ -15019,7 +15094,7 @@ static IrInstGen *ir_analyze_struct_literal_to_struct(IrAnalyze *ira, IrInst* so
IrInstGen *const_result = ir_const(ira, source_instr, wanted_type); IrInstGen *const_result = ir_const(ira, source_instr, wanted_type);
for (size_t i = 0; i < instr_field_count; i += 1) { for (size_t i = 0; i < instr_field_count; i += 1) {
TypeStructField *src_field = struct_operand->value->type->data.structure.fields[i]; TypeStructField *src_field = actual_type->data.structure.fields[i];
TypeStructField *dst_field = find_struct_type_field(wanted_type, src_field->name); TypeStructField *dst_field = find_struct_type_field(wanted_type, src_field->name);
if (dst_field == nullptr) { if (dst_field == nullptr) {
ErrorMsg *msg = ir_add_error(ira, source_instr, buf_sprintf("no field named '%s' in struct '%s'", ErrorMsg *msg = ir_add_error(ira, source_instr, buf_sprintf("no field named '%s' in struct '%s'",
@ -15043,7 +15118,7 @@ static IrInstGen *ir_analyze_struct_literal_to_struct(IrAnalyze *ira, IrInst* so
field_assign_nodes[dst_field->src_index] = src_field->decl_node; field_assign_nodes[dst_field->src_index] = src_field->decl_node;
IrInstGen *field_ptr = ir_analyze_struct_field_ptr(ira, source_instr, src_field, struct_ptr, IrInstGen *field_ptr = ir_analyze_struct_field_ptr(ira, source_instr, src_field, struct_ptr,
struct_operand->value->type, false); actual_type, false);
if (type_is_invalid(field_ptr->value->type)) if (type_is_invalid(field_ptr->value->type))
return ira->codegen->invalid_inst_gen; return ira->codegen->invalid_inst_gen;
IrInstGen *field_value = ir_get_deref(ira, source_instr, field_ptr, nullptr); IrInstGen *field_value = ir_get_deref(ira, source_instr, field_ptr, nullptr);
@ -15123,14 +15198,13 @@ static IrInstGen *ir_analyze_struct_literal_to_struct(IrAnalyze *ira, IrInst* so
heap::c_allocator.deallocate(field_values, actual_field_count); heap::c_allocator.deallocate(field_values, actual_field_count);
heap::c_allocator.deallocate(casted_fields, actual_field_count); heap::c_allocator.deallocate(casted_fields, actual_field_count);
return ir_get_deref(ira, source_instr, result_loc_inst, nullptr); return result_loc_inst;
} }
static IrInstGen *ir_analyze_struct_literal_to_union(IrAnalyze *ira, IrInst* source_instr, static IrInstGen *ir_analyze_struct_literal_to_union(IrAnalyze *ira, IrInst* source_instr,
IrInstGen *value, ZigType *union_type) IrInstGen *struct_ptr, ZigType *struct_type, ZigType *union_type)
{ {
Error err; Error err;
ZigType *struct_type = value->value->type;
assert(struct_type->id == ZigTypeIdStruct); assert(struct_type->id == ZigTypeIdStruct);
assert(union_type->id == ZigTypeIdUnion); assert(union_type->id == ZigTypeIdUnion);
@ -15153,7 +15227,11 @@ static IrInstGen *ir_analyze_struct_literal_to_union(IrAnalyze *ira, IrInst* sou
if (payload_type == nullptr) if (payload_type == nullptr)
return ira->codegen->invalid_inst_gen; return ira->codegen->invalid_inst_gen;
IrInstGen *field_value = ir_analyze_struct_value_field_value(ira, source_instr, value, only_field); IrInstGen *field_ptr = ir_analyze_struct_field_ptr(ira, source_instr, only_field, struct_ptr,
struct_type, false);
if (type_is_invalid(field_ptr->value->type))
return ira->codegen->invalid_inst_gen;
IrInstGen *field_value = ir_get_deref(ira, source_instr, field_ptr, nullptr);
if (type_is_invalid(field_value->value->type)) if (type_is_invalid(field_value->value->type))
return ira->codegen->invalid_inst_gen; return ira->codegen->invalid_inst_gen;
@ -15191,7 +15269,7 @@ static IrInstGen *ir_analyze_struct_literal_to_union(IrAnalyze *ira, IrInst* sou
if (type_is_invalid(store_ptr_inst->value->type)) if (type_is_invalid(store_ptr_inst->value->type))
return ira->codegen->invalid_inst_gen; return ira->codegen->invalid_inst_gen;
return ir_get_deref(ira, source_instr, result_loc_inst, nullptr); return result_loc_inst;
} }
// Add a compile error and return ErrorSemanticAnalyzeFail if the pointer alignment does not work, // Add a compile error and return ErrorSemanticAnalyzeFail if the pointer alignment does not work,
@ -15824,13 +15902,84 @@ static IrInstGen *ir_analyze_cast(IrAnalyze *ira, IrInst *source_instr,
if (wanted_type->id == ZigTypeIdArray && (is_array_init || field_count == 0) && if (wanted_type->id == ZigTypeIdArray && (is_array_init || field_count == 0) &&
wanted_type->data.array.len == field_count) wanted_type->data.array.len == field_count)
{ {
return ir_analyze_struct_literal_to_array(ira, source_instr, value, wanted_type); IrInstGen *struct_ptr = ir_get_ref(ira, source_instr, value, true, false);
if (type_is_invalid(struct_ptr->value->type))
return ira->codegen->invalid_inst_gen;
IrInstGen *ptr = ir_analyze_struct_literal_to_array(ira, source_instr, struct_ptr, actual_type, wanted_type);
if (ptr->value->type->id != ZigTypeIdPointer)
return ptr;
return ir_get_deref(ira, source_instr, ptr, nullptr);
} else if (wanted_type->id == ZigTypeIdStruct && !is_slice(wanted_type) && } else if (wanted_type->id == ZigTypeIdStruct && !is_slice(wanted_type) &&
(!is_array_init || field_count == 0)) (!is_array_init || field_count == 0))
{ {
return ir_analyze_struct_literal_to_struct(ira, source_instr, value, wanted_type); IrInstGen *struct_ptr = ir_get_ref(ira, source_instr, value, true, false);
if (type_is_invalid(struct_ptr->value->type))
return ira->codegen->invalid_inst_gen;
IrInstGen *ptr = ir_analyze_struct_literal_to_struct(ira, source_instr, struct_ptr, actual_type, wanted_type);
if (ptr->value->type->id != ZigTypeIdPointer)
return ptr;
return ir_get_deref(ira, source_instr, ptr, nullptr);
} else if (wanted_type->id == ZigTypeIdUnion && !is_array_init && field_count == 1) { } else if (wanted_type->id == ZigTypeIdUnion && !is_array_init && field_count == 1) {
return ir_analyze_struct_literal_to_union(ira, source_instr, value, wanted_type); IrInstGen *struct_ptr = ir_get_ref(ira, source_instr, value, true, false);
if (type_is_invalid(struct_ptr->value->type))
return ira->codegen->invalid_inst_gen;
IrInstGen *ptr = ir_analyze_struct_literal_to_union(ira, source_instr, struct_ptr, actual_type, wanted_type);
if (ptr->value->type->id != ZigTypeIdPointer)
return ptr;
return ir_get_deref(ira, source_instr, ptr, nullptr);
}
}
// cast from pointer to inferred struct type to pointer to array, union, or struct
if (actual_type->id == ZigTypeIdPointer && is_anon_container(actual_type->data.pointer.child_type)) {
ZigType *anon_type = actual_type->data.pointer.child_type;
const bool is_array_init =
anon_type->data.structure.special == StructSpecialInferredTuple;
const uint32_t field_count = anon_type->data.structure.src_field_count;
if (wanted_type->id == ZigTypeIdPointer &&
(!actual_type->data.pointer.is_volatile || wanted_type->data.pointer.is_volatile))
{
ZigType *wanted_child = wanted_type->data.pointer.child_type;
bool const_ok = (!actual_type->data.pointer.is_const || wanted_type->data.pointer.is_const);
if (wanted_child->id == ZigTypeIdArray && (is_array_init || field_count == 0) &&
wanted_child->data.array.len == field_count && (const_ok || field_count == 0))
{
IrInstGen *res = ir_analyze_struct_literal_to_array(ira, source_instr, value, anon_type, wanted_child);
if (res->value->type->id == ZigTypeIdPointer)
return res;
return ir_get_ref(ira, source_instr, res, actual_type->data.pointer.is_const, actual_type->data.pointer.is_volatile);
} else if (wanted_child->id == ZigTypeIdStruct && !is_slice(wanted_type) &&
(!is_array_init || field_count == 0) && const_ok)
{
IrInstGen *res = ir_analyze_struct_literal_to_struct(ira, source_instr, value, anon_type, wanted_child);
if (res->value->type->id == ZigTypeIdPointer)
return res;
return ir_get_ref(ira, source_instr, res, actual_type->data.pointer.is_const, actual_type->data.pointer.is_volatile);
} else if (wanted_child->id == ZigTypeIdUnion && !is_array_init && field_count == 1 && const_ok) {
IrInstGen *res = ir_analyze_struct_literal_to_union(ira, source_instr, value, anon_type, wanted_child);
if (res->value->type->id == ZigTypeIdPointer)
return res;
return ir_get_ref(ira, source_instr, res, actual_type->data.pointer.is_const, actual_type->data.pointer.is_volatile);
}
} else if (is_slice(wanted_type) && (is_array_init || field_count == 0)) {
ZigType *slice_type = wanted_type->data.structure.fields[slice_ptr_index]->type_entry;
if ((!actual_type->data.pointer.is_const || slice_type->data.pointer.is_const || field_count == 0) &&
(!actual_type->data.pointer.is_volatile || slice_type->data.pointer.is_volatile))
{
ZigType *slice_child_type = slice_type->data.pointer.child_type;
ZigType *slice_array_type = get_array_type(ira->codegen, slice_child_type, field_count, nullptr);
IrInstGen *res = ir_analyze_struct_literal_to_array(ira, source_instr, value, anon_type, slice_array_type);
if (type_is_invalid(res->value->type))
return ira->codegen->invalid_inst_gen;
if (res->value->type->id != ZigTypeIdPointer)
res = ir_get_ref(ira, source_instr, res, actual_type->data.pointer.is_const, actual_type->data.pointer.is_volatile);
return ir_resolve_ptr_of_array_to_slice(ira, source_instr, res, wanted_type, nullptr);
}
} }
} }

View file

@ -22,6 +22,23 @@ pub fn addCases(cases: *tests.CompileErrorContext) void {
"tmp.zig:4:17: error: integer value 1 cannot be coerced to type '*[10]u8'", "tmp.zig:4:17: error: integer value 1 cannot be coerced to type '*[10]u8'",
}); });
cases.add("pointer attributes checked when coercing pointer to anon literal",
\\comptime {
\\ const c: [][]const u8 = &.{"hello", "world" };
\\}
\\comptime {
\\ const c: *[2][]const u8 = &.{"hello", "world" };
\\}
\\const S = struct {a: u8 = 1, b: u32 = 2};
\\comptime {
\\ const c: *S = &.{};
\\}
, &[_][]const u8{
"mp.zig:2:31: error: expected type '[][]const u8', found '*const struct:2:31'",
"mp.zig:5:33: error: expected type '*[2][]const u8', found '*const struct:5:33'",
"mp.zig:9:21: error: expected type '*S', found '*const struct:9:21'",
});
cases.add("@Type() union payload is undefined", cases.add("@Type() union payload is undefined",
\\const Foo = @Type(@import("std").builtin.TypeInfo{ \\const Foo = @Type(@import("std").builtin.TypeInfo{
\\ .Struct = undefined, \\ .Struct = undefined,

View file

@ -431,3 +431,59 @@ test "zero-sized array with recursive type definition" {
var t: S = .{ .list = .{ .s = undefined } }; var t: S = .{ .list = .{ .s = undefined } };
expectEqual(@as(usize, 0), t.list.x); expectEqual(@as(usize, 0), t.list.x);
} }
test "type coercion of anon struct literal to array" {
const S = struct {
const U = union{
a: u32,
b: bool,
c: []const u8,
};
fn doTheTest() void {
var x1: u8 = 42;
const t1 = .{ x1, 56, 54 };
var arr1: [3]u8 = t1;
expect(arr1[0] == 42);
expect(arr1[1] == 56);
expect(arr1[2] == 54);
var x2: U = .{ .a = 42 };
const t2 = .{ x2, .{ .b = true }, .{ .c = "hello" } };
var arr2: [3]U = t2;
expect(arr2[0].a == 42);
expect(arr2[1].b == true);
expect(mem.eql(u8, arr2[2].c, "hello"));
}
};
S.doTheTest();
comptime S.doTheTest();
}
test "type coercion of pointer to anon struct literal to pointer to array" {
const S = struct {
const U = union{
a: u32,
b: bool,
c: []const u8,
};
fn doTheTest() void {
var x1: u8 = 42;
const t1 = &.{ x1, 56, 54 };
var arr1: *const[3]u8 = t1;
expect(arr1[0] == 42);
expect(arr1[1] == 56);
expect(arr1[2] == 54);
var x2: U = .{ .a = 42 };
const t2 = &.{ x2, .{ .b = true }, .{ .c = "hello" } };
var arr2: *const [3]U = t2;
expect(arr2[0].a == 42);
expect(arr2[1].b == true);
expect(mem.eql(u8, arr2[2].c, "hello"));
}
};
S.doTheTest();
comptime S.doTheTest();
}

View file

@ -304,3 +304,34 @@ test "slice of hardcoded address to pointer" {
S.doTheTest(); S.doTheTest();
} }
test "type coercion of pointer to anon struct literal to pointer to slice" {
const S = struct {
const U = union{
a: u32,
b: bool,
c: []const u8,
};
fn doTheTest() void {
var x1: u8 = 42;
const t1 = &.{ x1, 56, 54 };
var slice1: []const u8 = t1;
expect(slice1.len == 3);
expect(slice1[0] == 42);
expect(slice1[1] == 56);
expect(slice1[2] == 54);
var x2: []const u8 = "hello";
const t2 = &.{ x2, ", ", "world!" };
// @compileLog(@TypeOf(t2));
var slice2: []const []const u8 = t2;
expect(slice2.len == 3);
expect(mem.eql(u8, slice2[0], "hello"));
expect(mem.eql(u8, slice2[1], ", "));
expect(mem.eql(u8, slice2[2], "world!"));
}
};
// S.doTheTest();
comptime S.doTheTest();
}

View file

@ -885,6 +885,39 @@ test "type coercion of anon struct literal to struct" {
comptime S.doTheTest(); comptime S.doTheTest();
} }
test "type coercion of pointer to anon struct literal to pointer to struct" {
const S = struct {
const S2 = struct {
A: u32,
B: []const u8,
C: void,
D: Foo = .{},
};
const Foo = struct {
field: i32 = 1234,
};
fn doTheTest() void {
var y: u32 = 42;
const t0 = &.{ .A = 123, .B = "foo", .C = {} };
const t1 = &.{ .A = y, .B = "foo", .C = {} };
const y0: *const S2 = t0;
var y1: *const S2 = t1;
expect(y0.A == 123);
expect(std.mem.eql(u8, y0.B, "foo"));
expect(y0.C == {});
expect(y0.D.field == 1234);
expect(y1.A == y);
expect(std.mem.eql(u8, y1.B, "foo"));
expect(y1.C == {});
expect(y1.D.field == 1234);
}
};
S.doTheTest();
comptime S.doTheTest();
}
test "packed struct with undefined initializers" { test "packed struct with undefined initializers" {
const S = struct { const S = struct {
const P = packed struct { const P = packed struct {

View file

@ -667,6 +667,33 @@ test "cast from anonymous struct to union" {
comptime S.doTheTest(); comptime S.doTheTest();
} }
test "cast from pointer to anonymous struct to pointer to union" {
const S = struct {
const U = union(enum) {
A: u32,
B: []const u8,
C: void,
};
fn doTheTest() void {
var y: u32 = 42;
const t0 = &.{ .A = 123 };
const t1 = &.{ .B = "foo" };
const t2 = &.{ .C = {} };
const t3 = &.{ .A = y };
const x0: *const U = t0;
var x1: *const U = t1;
const x2: *const U = t2;
var x3: *const U = t3;
expect(x0.A == 123);
expect(std.mem.eql(u8, x1.B, "foo"));
expect(x2.* == .C);
expect(x3.A == y);
}
};
S.doTheTest();
comptime S.doTheTest();
}
test "method call on an empty union" { test "method call on an empty union" {
const S = struct { const S = struct {
const MyUnion = union(Tag) { const MyUnion = union(Tag) {