mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 05:44:20 +00:00
hash: implement fast crc32c
This commit is contained in:
parent
fbafbd4262
commit
0d44084243
6 changed files with 303 additions and 34 deletions
|
|
@ -1,5 +1,6 @@
|
|||
//! This file is auto-generated by tools/update_crc_catalog.zig.
|
||||
|
||||
const builtin = @import("builtin");
|
||||
const impl = @import("crc/impl.zig");
|
||||
|
||||
pub const Crc = impl.Crc;
|
||||
|
|
@ -13,6 +14,18 @@ test {
|
|||
_ = @import("crc/test.zig");
|
||||
}
|
||||
|
||||
const can_use_fast_crc32c = builtin.cpu.has(.x86, .crc32) and builtin.zig_backend == .stage2_llvm;
|
||||
pub const Crc32Iscsi = switch (can_use_fast_crc32c) {
|
||||
true => @import("crc/crc32c.zig").Wrapper,
|
||||
else => Crc(u32, .{
|
||||
.polynomial = 0x1edc6f41,
|
||||
.initial = 0xffffffff,
|
||||
.reflect_input = true,
|
||||
.reflect_output = true,
|
||||
.xor_output = 0xffffffff,
|
||||
}),
|
||||
};
|
||||
|
||||
pub const Crc3Gsm = Crc(u3, .{
|
||||
.polynomial = 0x3,
|
||||
.initial = 0x0,
|
||||
|
|
@ -797,14 +810,6 @@ pub const Crc32Cksum = Crc(u32, .{
|
|||
.xor_output = 0xffffffff,
|
||||
});
|
||||
|
||||
pub const Crc32Iscsi = Crc(u32, .{
|
||||
.polynomial = 0x1edc6f41,
|
||||
.initial = 0xffffffff,
|
||||
.reflect_input = true,
|
||||
.reflect_output = true,
|
||||
.xor_output = 0xffffffff,
|
||||
});
|
||||
|
||||
pub const Crc32IsoHdlc = Crc(u32, .{
|
||||
.polynomial = 0x04c11db7,
|
||||
.initial = 0xffffffff,
|
||||
|
|
|
|||
239
lib/std/hash/crc/crc32c.zig
Normal file
239
lib/std/hash/crc/crc32c.zig
Normal file
|
|
@ -0,0 +1,239 @@
|
|||
//! Implements CRC-32C (Castagnoli) using the SSE4.2 Intel CRC32 instruction.
|
||||
//!
|
||||
//! A couple useful links for understanding the approach taken here:
|
||||
//! - https://github.com/madler/brotli/blob/1d428d3a9baade233ebc3ac108293256bcb813d1/crc32c.c
|
||||
//! - https://github.com/madler/zlib/blob/5a82f71ed1dfc0bec044d9702463dbdf84ea3b71/crc32.c
|
||||
//! - http://www.ross.net/crc/download/crc_v3.txt
|
||||
|
||||
// Reflected CRC-32C polynomial in binary form.
|
||||
const POLY = 0x82f63b78;
|
||||
|
||||
const LONG = 8192;
|
||||
const SHORT = 256;
|
||||
const long_lookup_table = genTable(LONG);
|
||||
const short_lookup_table = genTable(SHORT);
|
||||
|
||||
/// Generates the lookup table for efficiently combining CRCs over a block of a given length `length`.
|
||||
/// This works by building an operator that advances the CRC state as if `length` zero-bytes were appended.
|
||||
/// We pre-compute 4 tables of 256 entries each (one per byte offset).
|
||||
///
|
||||
///
|
||||
/// The idea behind this table is quite interesting. The CRC state is equivalent to the
|
||||
/// remainder of dividing the message polynomial (over GF(2)) by the CRC polynomial.
|
||||
///
|
||||
/// Advancing the CRC register by `k` zero bits is equivalent to multiplying the current
|
||||
/// CRC state by `x^k` modulo the CRC polynomial. This operation can be represented
|
||||
/// as a linear transformation in GF(2), i.e, a matrix.
|
||||
///
|
||||
/// We build up this matrix via repeated squaring:
|
||||
/// - odd represents the operator for 1 zero bit (i.e, multiplication by `x^1 mod POLY`)
|
||||
/// - even represents the operator for 2 zero bits (`x^2 mod POLY`)
|
||||
/// - squaring again gives `x^4 mod POLY`, and so on until we get to the right size.
|
||||
///
|
||||
/// By squaring the shifting `len`, we build the operator for `x^l mod POLY`.
|
||||
fn genTable(length: usize) [4][256]u32 {
|
||||
@setEvalBranchQuota(250000);
|
||||
|
||||
var even: [32]u32 = undefined;
|
||||
zeroes: {
|
||||
var odd: [32]u32 = undefined;
|
||||
|
||||
// Initialize our `odd` array with the operator for a single zero bit:
|
||||
// - odd[0] is the polynomial itself (acts on the MSB).
|
||||
// - odd[1..32] represent shifting a single bit through 31 positions.
|
||||
odd[0] = POLY;
|
||||
var row: u32 = 1;
|
||||
for (1..32) |n| {
|
||||
odd[n] = row;
|
||||
row <<= 1;
|
||||
}
|
||||
|
||||
// even = odd squared: even represents `x^2 mod POLY`.
|
||||
square(&even, &odd);
|
||||
// odd = even squared: odd now represents `x^4 mod POLY`.
|
||||
square(&odd, &even);
|
||||
|
||||
// Continue squaring to double the number of zeroes encoded each time:
|
||||
//
|
||||
// At each point in the process:
|
||||
// - square(even, odd): even gets the operator for twice the current length.
|
||||
// - square(odd, even): odd gets the operator for 4 times the original length.
|
||||
var len = length;
|
||||
while (true) {
|
||||
square(&even, &odd);
|
||||
len >>= 1;
|
||||
if (len == 0) break :zeroes;
|
||||
square(&odd, &even);
|
||||
len >>= 1;
|
||||
if (len == 0) break;
|
||||
}
|
||||
|
||||
@memcpy(&even, &odd);
|
||||
}
|
||||
|
||||
var zeroes: [4][256]u32 = undefined;
|
||||
for (0..256) |n| {
|
||||
zeroes[0][n] = times(&even, n);
|
||||
zeroes[1][n] = times(&even, n << 8);
|
||||
zeroes[2][n] = times(&even, n << 16);
|
||||
zeroes[3][n] = times(&even, n << 24);
|
||||
}
|
||||
return zeroes;
|
||||
}
|
||||
|
||||
/// Computes `mat * vec` over `GF(2)`, where `mat` is a 32x32 binary matrix and `vec`
|
||||
/// is a 32-bit vector. This somewhat "simulates" how bits propagate through the CRC register
|
||||
/// during shifting.
|
||||
///
|
||||
/// - In GF(2) (aka a field where the only values are 0 and 1, aka binary), multiplication is
|
||||
/// an `AND`, and addition is `XOR`.
|
||||
/// - This dot product determines how each bit in the input vector "contributes" to
|
||||
/// the final CRC state, by XORing (adding) rows of the matrix where `vec` has 1s.
|
||||
fn times(mat: *const [32]u32, vec: u32) u32 {
|
||||
var sum: u32 = 0;
|
||||
var v = vec;
|
||||
var i: u32 = 0;
|
||||
while (v != 0) {
|
||||
if (v & 1 != 0) sum ^= mat[i];
|
||||
v >>= 1;
|
||||
i += 1;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
/// Computes the square of a matrix in GF(2), i.e `dst = dst x src`.
|
||||
///
|
||||
/// This produces the operator for doubling the number of zeroes:
|
||||
/// if `src` represents advancing the CRC by `k` zeroes, then `dest` will
|
||||
/// represent advancing by 2k zeroes.
|
||||
///
|
||||
/// Since polynomial multiplication mod POLY is linear, `mat(mat(x)) = mat^2(x)`
|
||||
/// gives the effect of two sequential applications of the operator.
|
||||
fn square(dst: *[32]u32, src: *const [32]u32) void {
|
||||
for (dst, src) |*d, s| {
|
||||
d.* = times(src, s);
|
||||
}
|
||||
}
|
||||
|
||||
fn shift(table: *const [4][256]u32, crc: u32) u32 {
|
||||
return table[0][crc & 0xFF] ^ table[1][(crc >> 8) & 0xFF] ^ table[2][(crc >> 16) & 0xFF] ^ table[3][crc >> 24];
|
||||
}
|
||||
|
||||
fn crc32(crc: u32, input: []const u8) u32 {
|
||||
var crc0: u64 = ~crc;
|
||||
|
||||
// Compute the CRC for up to seven leading bytes to bring the
|
||||
// `next` pointer to an eight-byte boundary.
|
||||
var next = input;
|
||||
while (next.len > 0 and @intFromPtr(next.ptr) & 7 != 0) {
|
||||
asm volatile ("crc32b %[out], %[in]"
|
||||
: [in] "+r" (crc0),
|
||||
: [out] "rm" (next[0]),
|
||||
);
|
||||
next = next[1..];
|
||||
}
|
||||
|
||||
// Compute the CRC on sets of LONG * 3 bytes, executing three independent
|
||||
// CRC instructions, each on LONG bytes. This is an optimization for
|
||||
// targets where the CRC instruction has a throughput of one CRC per
|
||||
// cycle, but a latency of three cycles.
|
||||
while (next.len >= LONG * 3) {
|
||||
var crc1: u64 = 0;
|
||||
var crc2: u64 = 0;
|
||||
|
||||
const start = next.len;
|
||||
while (true) {
|
||||
// Safe @alignCast(), since we've aligned the pointer to 8 bytes before this loop.
|
||||
const long: [*]const u64 = @ptrCast(@alignCast(next));
|
||||
asm volatile (
|
||||
\\crc32q %[out0], %[in0]
|
||||
\\crc32q %[out1], %[in1]
|
||||
\\crc32q %[out2], %[in2]
|
||||
: [in0] "+r" (crc0),
|
||||
[in1] "+r" (crc1),
|
||||
[in2] "+r" (crc2),
|
||||
: [out0] "rm" (long[0 * LONG / 8]),
|
||||
[out1] "rm" (long[1 * LONG / 8]),
|
||||
[out2] "rm" (long[2 * LONG / 8]),
|
||||
);
|
||||
next = next[8..];
|
||||
if (next.len <= start - LONG) break;
|
||||
}
|
||||
|
||||
crc0 = shift(&long_lookup_table, @truncate(crc0)) ^ crc1;
|
||||
crc0 = shift(&long_lookup_table, @truncate(crc0)) ^ crc2;
|
||||
next = next[LONG * 2 ..];
|
||||
}
|
||||
|
||||
// Same thing as above, but for smaller chunks of SHORT bytes.
|
||||
while (next.len >= SHORT * 3) {
|
||||
var crc1: u64 = 0;
|
||||
var crc2: u64 = 0;
|
||||
|
||||
const start = next.len;
|
||||
while (true) {
|
||||
const long: [*]const u64 = @ptrCast(@alignCast(next));
|
||||
asm volatile (
|
||||
\\crc32q %[out0], %[in0]
|
||||
\\crc32q %[out1], %[in1]
|
||||
\\crc32q %[out2], %[in2]
|
||||
: [in0] "+r" (crc0),
|
||||
[in1] "+r" (crc1),
|
||||
[in2] "+r" (crc2),
|
||||
: [out0] "rm" (long[0 * SHORT / 8]),
|
||||
[out1] "rm" (long[1 * SHORT / 8]),
|
||||
[out2] "rm" (long[2 * SHORT / 8]),
|
||||
);
|
||||
next = next[8..];
|
||||
if (next.len <= start - SHORT) break;
|
||||
}
|
||||
|
||||
crc0 = shift(&short_lookup_table, @truncate(crc0)) ^ crc1;
|
||||
crc0 = shift(&short_lookup_table, @truncate(crc0)) ^ crc2;
|
||||
next = next[SHORT * 2 ..];
|
||||
}
|
||||
|
||||
// Compute via 8-byte chunks, until we're left with less than 8 bytes.
|
||||
while (next.len >= 8) {
|
||||
const long: [*]const u64 = @ptrCast(@alignCast(next));
|
||||
asm volatile ("crc32q %[out], %[in]"
|
||||
: [in] "+r" (crc0),
|
||||
: [out] "rm" (long[0]),
|
||||
);
|
||||
next = next[8..];
|
||||
}
|
||||
|
||||
// Finish the last bytes with just single instructions.
|
||||
while (next.len > 0) {
|
||||
asm volatile ("crc32b %[out], %[in]"
|
||||
: [in] "+r" (crc0),
|
||||
: [out] "rm" (next[0]),
|
||||
);
|
||||
next = next[1..];
|
||||
}
|
||||
|
||||
return @truncate(~crc0);
|
||||
}
|
||||
|
||||
// Wrapper around the accelerated implementation to match the one in impl.zig.
|
||||
pub const Wrapper = struct {
|
||||
crc: u32,
|
||||
|
||||
pub fn init() Wrapper {
|
||||
return .{ .crc = 0 };
|
||||
}
|
||||
|
||||
pub fn update(w: *Wrapper, bytes: []const u8) void {
|
||||
w.crc = crc32(w.crc, bytes);
|
||||
}
|
||||
|
||||
pub fn final(w: Wrapper) u32 {
|
||||
return w.crc;
|
||||
}
|
||||
|
||||
pub fn hash(bytes: []const u8) u32 {
|
||||
var c = init();
|
||||
c.update(bytes);
|
||||
return c.final();
|
||||
}
|
||||
};
|
||||
|
|
@ -23,12 +23,7 @@ pub fn Crc(comptime W: type, comptime algorithm: Algorithm(W)) type {
|
|||
const I = if (@bitSizeOf(W) < 8) u8 else W;
|
||||
const lookup_table = blk: {
|
||||
@setEvalBranchQuota(2500);
|
||||
|
||||
const poly = if (algorithm.reflect_input)
|
||||
@bitReverse(@as(I, algorithm.polynomial)) >> (@bitSizeOf(I) - @bitSizeOf(W))
|
||||
else
|
||||
@as(I, algorithm.polynomial) << (@bitSizeOf(I) - @bitSizeOf(W));
|
||||
|
||||
const poly = reflect(algorithm.polynomial);
|
||||
var table: [256]I = undefined;
|
||||
for (&table, 0..) |*e, i| {
|
||||
var crc: I = i;
|
||||
|
|
@ -52,15 +47,13 @@ pub fn Crc(comptime W: type, comptime algorithm: Algorithm(W)) type {
|
|||
crc: I,
|
||||
|
||||
pub fn init() Self {
|
||||
const initial = if (algorithm.reflect_input)
|
||||
@bitReverse(@as(I, algorithm.initial)) >> (@bitSizeOf(I) - @bitSizeOf(W))
|
||||
else
|
||||
@as(I, algorithm.initial) << (@bitSizeOf(I) - @bitSizeOf(W));
|
||||
return Self{ .crc = initial };
|
||||
const initial = reflect(algorithm.initial);
|
||||
return .{ .crc = initial };
|
||||
}
|
||||
|
||||
inline fn tableEntry(index: I) I {
|
||||
return lookup_table[@as(u8, @intCast(index & 0xFF))];
|
||||
const short: u8 = @truncate(index);
|
||||
return lookup_table[short];
|
||||
}
|
||||
|
||||
pub fn update(self: *Self, bytes: []const u8) void {
|
||||
|
|
@ -90,7 +83,7 @@ pub fn Crc(comptime W: type, comptime algorithm: Algorithm(W)) type {
|
|||
if (!algorithm.reflect_output) {
|
||||
c >>= @bitSizeOf(I) - @bitSizeOf(W);
|
||||
}
|
||||
return @as(W, @intCast(c ^ algorithm.xor_output));
|
||||
return @intCast(c ^ algorithm.xor_output);
|
||||
}
|
||||
|
||||
pub fn hash(bytes: []const u8) W {
|
||||
|
|
@ -98,5 +91,13 @@ pub fn Crc(comptime W: type, comptime algorithm: Algorithm(W)) type {
|
|||
c.update(bytes);
|
||||
return c.final();
|
||||
}
|
||||
|
||||
fn reflect(x: I) I {
|
||||
const offset = @bitSizeOf(I) - @bitSizeOf(W);
|
||||
if (algorithm.reflect_input)
|
||||
return @bitReverse(x) >> offset
|
||||
else
|
||||
return x << offset;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
|
|
|||
|
|
@ -26,6 +26,17 @@ test "crc32 koopman regression" {
|
|||
try testing.expectEqual(crc32.hash("abc"), 0xba2322ac);
|
||||
}
|
||||
|
||||
test "CRC-32/ISCSI" {
|
||||
const Crc32Iscsi = crc.Crc32Iscsi;
|
||||
|
||||
try testing.expectEqual(@as(u32, 0xe3069283), Crc32Iscsi.hash("123456789"));
|
||||
|
||||
var c = Crc32Iscsi.init();
|
||||
c.update("1234");
|
||||
c.update("56789");
|
||||
try testing.expectEqual(@as(u32, 0xe3069283), c.final());
|
||||
}
|
||||
|
||||
test "CRC-3/GSM" {
|
||||
const Crc3Gsm = crc.Crc3Gsm;
|
||||
|
||||
|
|
@ -1104,17 +1115,6 @@ test "CRC-32/CKSUM" {
|
|||
try testing.expectEqual(@as(u32, 0x765e7680), c.final());
|
||||
}
|
||||
|
||||
test "CRC-32/ISCSI" {
|
||||
const Crc32Iscsi = crc.Crc32Iscsi;
|
||||
|
||||
try testing.expectEqual(@as(u32, 0xe3069283), Crc32Iscsi.hash("123456789"));
|
||||
|
||||
var c = Crc32Iscsi.init();
|
||||
c.update("1234");
|
||||
c.update("56789");
|
||||
try testing.expectEqual(@as(u32, 0xe3069283), c.final());
|
||||
}
|
||||
|
||||
test "CRC-32/ISO-HDLC" {
|
||||
const Crc32IsoHdlc = crc.Crc32IsoHdlc;
|
||||
|
||||
|
|
|
|||
|
|
@ -97,7 +97,8 @@ width=32 poly=0xa833982b init=0xffffffff refin=true refout=true xorout=0xff
|
|||
width=32 poly=0x04c11db7 init=0xffffffff refin=false refout=false xorout=0xffffffff check=0xfc891918 residue=0xc704dd7b name="CRC-32/BZIP2"
|
||||
width=32 poly=0x8001801b init=0x00000000 refin=true refout=true xorout=0x00000000 check=0x6ec2edc4 residue=0x00000000 name="CRC-32/CD-ROM-EDC"
|
||||
width=32 poly=0x04c11db7 init=0x00000000 refin=false refout=false xorout=0xffffffff check=0x765e7680 residue=0xc704dd7b name="CRC-32/CKSUM"
|
||||
width=32 poly=0x1edc6f41 init=0xffffffff refin=true refout=true xorout=0xffffffff check=0xe3069283 residue=0xb798b438 name="CRC-32/ISCSI"
|
||||
# CRC-32C implementation is defined manually, since it has an accelerated variant.
|
||||
# width=32 poly=0x1edc6f41 init=0xffffffff refin=true refout=true xorout=0xffffffff check=0xe3069283 residue=0xb798b438 name="CRC-32/ISCSI"
|
||||
width=32 poly=0x04c11db7 init=0xffffffff refin=true refout=true xorout=0xffffffff check=0xcbf43926 residue=0xdebb20e3 name="CRC-32/ISO-HDLC"
|
||||
width=32 poly=0x04c11db7 init=0xffffffff refin=true refout=true xorout=0x00000000 check=0x340bc6d9 residue=0x00000000 name="CRC-32/JAMCRC"
|
||||
width=32 poly=0x741b8cd7 init=0xffffffff refin=true refout=true xorout=0xffffffff check=0x2d3dd0ae residue=0x00000000 name="CRC-32/KOOPMAN"
|
||||
|
|
|
|||
|
|
@ -36,6 +36,7 @@ pub fn main() anyerror!void {
|
|||
try code_writer.writeAll(
|
||||
\\//! This file is auto-generated by tools/update_crc_catalog.zig.
|
||||
\\
|
||||
\\const builtin = @import("builtin");
|
||||
\\const impl = @import("crc/impl.zig");
|
||||
\\
|
||||
\\pub const Crc = impl.Crc;
|
||||
|
|
@ -49,6 +50,17 @@ pub fn main() anyerror!void {
|
|||
\\ _ = @import("crc/test.zig");
|
||||
\\}
|
||||
\\
|
||||
\\pub const Crc32Iscsi = switch (builtin.cpu.has(.x86, .crc32)) {
|
||||
\\ true => @import("crc/crc32c.zig").Wrapper,
|
||||
\\ else => Crc(u32, .{
|
||||
\\ .polynomial = 0x1edc6f41,
|
||||
\\ .initial = 0xffffffff,
|
||||
\\ .reflect_input = true,
|
||||
\\ .reflect_output = true,
|
||||
\\ .xor_output = 0xffffffff,
|
||||
\\ }),
|
||||
\\};
|
||||
\\
|
||||
);
|
||||
|
||||
var zig_test_file = try crc_target_dir.createFile("test.zig", .{});
|
||||
|
|
@ -80,12 +92,23 @@ pub fn main() anyerror!void {
|
|||
\\}
|
||||
\\
|
||||
\\test "crc32 koopman regression" {
|
||||
\\ const crc32 = crc.Koopman;
|
||||
\\ const crc32 = crc.Crc32Koopman;
|
||||
\\ try testing.expectEqual(crc32.hash(""), 0x00000000);
|
||||
\\ try testing.expectEqual(crc32.hash("a"), 0x0da2aa8a);
|
||||
\\ try testing.expectEqual(crc32.hash("abc"), 0xba2322ac);
|
||||
\\}
|
||||
\\
|
||||
\\test "CRC-32/ISCSI" {
|
||||
\\ const Crc32Iscsi = crc.Crc32Iscsi;
|
||||
\\
|
||||
\\ try testing.expectEqual(@as(u32, 0xe3069283), Crc32Iscsi.hash("123456789"));
|
||||
\\
|
||||
\\ var c = Crc32Iscsi.init();
|
||||
\\ c.update("1234");
|
||||
\\ c.update("56789");
|
||||
\\ try testing.expectEqual(@as(u32, 0xe3069283), c.final());
|
||||
\\}
|
||||
\\
|
||||
);
|
||||
|
||||
var reader: std.Io.Reader = .fixed(catalog_txt);
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue