mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 13:54:21 +00:00
revert std.Thread.Pool for now
and move the Io impl to a separate file
This commit is contained in:
parent
fd4dd3befb
commit
14c3dc4c49
3 changed files with 955 additions and 628 deletions
|
|
@ -558,6 +558,7 @@ test {
|
||||||
const Io = @This();
|
const Io = @This();
|
||||||
|
|
||||||
pub const EventLoop = @import("Io/EventLoop.zig");
|
pub const EventLoop = @import("Io/EventLoop.zig");
|
||||||
|
pub const ThreadPool = @import("Io/ThreadPool.zig");
|
||||||
|
|
||||||
userdata: ?*anyopaque,
|
userdata: ?*anyopaque,
|
||||||
vtable: *const VTable,
|
vtable: *const VTable,
|
||||||
|
|
|
||||||
852
lib/std/Io/ThreadPool.zig
Normal file
852
lib/std/Io/ThreadPool.zig
Normal file
|
|
@ -0,0 +1,852 @@
|
||||||
|
const builtin = @import("builtin");
|
||||||
|
const std = @import("../std.zig");
|
||||||
|
const Allocator = std.mem.Allocator;
|
||||||
|
const assert = std.debug.assert;
|
||||||
|
const WaitGroup = std.Thread.WaitGroup;
|
||||||
|
const Io = std.Io;
|
||||||
|
const Pool = @This();
|
||||||
|
|
||||||
|
/// Must be a thread-safe allocator.
|
||||||
|
allocator: std.mem.Allocator,
|
||||||
|
mutex: std.Thread.Mutex = .{},
|
||||||
|
cond: std.Thread.Condition = .{},
|
||||||
|
run_queue: std.SinglyLinkedList = .{},
|
||||||
|
is_running: bool = true,
|
||||||
|
threads: std.ArrayListUnmanaged(std.Thread),
|
||||||
|
ids: if (builtin.single_threaded) struct {
|
||||||
|
inline fn deinit(_: @This(), _: std.mem.Allocator) void {}
|
||||||
|
fn getIndex(_: @This(), _: std.Thread.Id) usize {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
} else std.AutoArrayHashMapUnmanaged(std.Thread.Id, void),
|
||||||
|
stack_size: usize,
|
||||||
|
|
||||||
|
threadlocal var current_closure: ?*AsyncClosure = null;
|
||||||
|
|
||||||
|
pub const Runnable = struct {
|
||||||
|
runFn: RunProto,
|
||||||
|
node: std.SinglyLinkedList.Node = .{},
|
||||||
|
};
|
||||||
|
|
||||||
|
pub const RunProto = *const fn (*Runnable, id: ?usize) void;
|
||||||
|
|
||||||
|
pub const Options = struct {
|
||||||
|
allocator: std.mem.Allocator,
|
||||||
|
n_jobs: ?usize = null,
|
||||||
|
track_ids: bool = false,
|
||||||
|
stack_size: usize = std.Thread.SpawnConfig.default_stack_size,
|
||||||
|
};
|
||||||
|
|
||||||
|
pub fn init(pool: *Pool, options: Options) !void {
|
||||||
|
const gpa = options.allocator;
|
||||||
|
const thread_count = options.n_jobs orelse @max(1, std.Thread.getCpuCount() catch 1);
|
||||||
|
const threads = try gpa.alloc(std.Thread, thread_count);
|
||||||
|
errdefer gpa.free(threads);
|
||||||
|
|
||||||
|
pool.* = .{
|
||||||
|
.allocator = gpa,
|
||||||
|
.threads = .initBuffer(threads),
|
||||||
|
.ids = .{},
|
||||||
|
.stack_size = options.stack_size,
|
||||||
|
};
|
||||||
|
|
||||||
|
if (builtin.single_threaded) return;
|
||||||
|
|
||||||
|
if (options.track_ids) {
|
||||||
|
try pool.ids.ensureTotalCapacity(gpa, 1 + thread_count);
|
||||||
|
pool.ids.putAssumeCapacityNoClobber(std.Thread.getCurrentId(), {});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn deinit(pool: *Pool) void {
|
||||||
|
const gpa = pool.allocator;
|
||||||
|
pool.join();
|
||||||
|
pool.threads.deinit(gpa);
|
||||||
|
pool.ids.deinit(gpa);
|
||||||
|
pool.* = undefined;
|
||||||
|
}
|
||||||
|
|
||||||
|
fn join(pool: *Pool) void {
|
||||||
|
if (builtin.single_threaded) return;
|
||||||
|
|
||||||
|
{
|
||||||
|
pool.mutex.lock();
|
||||||
|
defer pool.mutex.unlock();
|
||||||
|
|
||||||
|
// ensure future worker threads exit the dequeue loop
|
||||||
|
pool.is_running = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// wake up any sleeping threads (this can be done outside the mutex)
|
||||||
|
// then wait for all the threads we know are spawned to complete.
|
||||||
|
pool.cond.broadcast();
|
||||||
|
for (pool.threads.items) |thread| thread.join();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Runs `func` in the thread pool, calling `WaitGroup.start` beforehand, and
|
||||||
|
/// `WaitGroup.finish` after it returns.
|
||||||
|
///
|
||||||
|
/// In the case that queuing the function call fails to allocate memory, or the
|
||||||
|
/// target is single-threaded, the function is called directly.
|
||||||
|
pub fn spawnWg(pool: *Pool, wait_group: *WaitGroup, comptime func: anytype, args: anytype) void {
|
||||||
|
wait_group.start();
|
||||||
|
|
||||||
|
if (builtin.single_threaded) {
|
||||||
|
@call(.auto, func, args);
|
||||||
|
wait_group.finish();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const Args = @TypeOf(args);
|
||||||
|
const Closure = struct {
|
||||||
|
arguments: Args,
|
||||||
|
pool: *Pool,
|
||||||
|
runnable: Runnable = .{ .runFn = runFn },
|
||||||
|
wait_group: *WaitGroup,
|
||||||
|
|
||||||
|
fn runFn(runnable: *Runnable, _: ?usize) void {
|
||||||
|
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
|
||||||
|
@call(.auto, func, closure.arguments);
|
||||||
|
closure.wait_group.finish();
|
||||||
|
closure.pool.allocator.destroy(closure);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
pool.mutex.lock();
|
||||||
|
|
||||||
|
const gpa = pool.allocator;
|
||||||
|
const closure = gpa.create(Closure) catch {
|
||||||
|
pool.mutex.unlock();
|
||||||
|
@call(.auto, func, args);
|
||||||
|
wait_group.finish();
|
||||||
|
return;
|
||||||
|
};
|
||||||
|
closure.* = .{
|
||||||
|
.arguments = args,
|
||||||
|
.pool = pool,
|
||||||
|
.wait_group = wait_group,
|
||||||
|
};
|
||||||
|
|
||||||
|
pool.run_queue.prepend(&closure.runnable.node);
|
||||||
|
|
||||||
|
if (pool.threads.items.len < pool.threads.capacity) {
|
||||||
|
pool.threads.addOneAssumeCapacity().* = std.Thread.spawn(.{
|
||||||
|
.stack_size = pool.stack_size,
|
||||||
|
.allocator = gpa,
|
||||||
|
}, worker, .{pool}) catch t: {
|
||||||
|
pool.threads.items.len -= 1;
|
||||||
|
break :t undefined;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
pool.mutex.unlock();
|
||||||
|
pool.cond.signal();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Runs `func` in the thread pool, calling `WaitGroup.start` beforehand, and
|
||||||
|
/// `WaitGroup.finish` after it returns.
|
||||||
|
///
|
||||||
|
/// The first argument passed to `func` is a dense `usize` thread id, the rest
|
||||||
|
/// of the arguments are passed from `args`. Requires the pool to have been
|
||||||
|
/// initialized with `.track_ids = true`.
|
||||||
|
///
|
||||||
|
/// In the case that queuing the function call fails to allocate memory, or the
|
||||||
|
/// target is single-threaded, the function is called directly.
|
||||||
|
pub fn spawnWgId(pool: *Pool, wait_group: *WaitGroup, comptime func: anytype, args: anytype) void {
|
||||||
|
wait_group.start();
|
||||||
|
|
||||||
|
if (builtin.single_threaded) {
|
||||||
|
@call(.auto, func, .{0} ++ args);
|
||||||
|
wait_group.finish();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const Args = @TypeOf(args);
|
||||||
|
const Closure = struct {
|
||||||
|
arguments: Args,
|
||||||
|
pool: *Pool,
|
||||||
|
runnable: Runnable = .{ .runFn = runFn },
|
||||||
|
wait_group: *WaitGroup,
|
||||||
|
|
||||||
|
fn runFn(runnable: *Runnable, id: ?usize) void {
|
||||||
|
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
|
||||||
|
@call(.auto, func, .{id.?} ++ closure.arguments);
|
||||||
|
closure.wait_group.finish();
|
||||||
|
closure.pool.allocator.destroy(closure);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
pool.mutex.lock();
|
||||||
|
|
||||||
|
const gpa = pool.allocator;
|
||||||
|
const closure = gpa.create(Closure) catch {
|
||||||
|
const id: ?usize = pool.ids.getIndex(std.Thread.getCurrentId());
|
||||||
|
pool.mutex.unlock();
|
||||||
|
@call(.auto, func, .{id.?} ++ args);
|
||||||
|
wait_group.finish();
|
||||||
|
return;
|
||||||
|
};
|
||||||
|
closure.* = .{
|
||||||
|
.arguments = args,
|
||||||
|
.pool = pool,
|
||||||
|
.wait_group = wait_group,
|
||||||
|
};
|
||||||
|
|
||||||
|
pool.run_queue.prepend(&closure.runnable.node);
|
||||||
|
|
||||||
|
if (pool.threads.items.len < pool.threads.capacity) {
|
||||||
|
pool.threads.addOneAssumeCapacity().* = std.Thread.spawn(.{
|
||||||
|
.stack_size = pool.stack_size,
|
||||||
|
.allocator = gpa,
|
||||||
|
}, worker, .{pool}) catch t: {
|
||||||
|
pool.threads.items.len -= 1;
|
||||||
|
break :t undefined;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
pool.mutex.unlock();
|
||||||
|
pool.cond.signal();
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn spawn(pool: *Pool, comptime func: anytype, args: anytype) void {
|
||||||
|
if (builtin.single_threaded) {
|
||||||
|
@call(.auto, func, args);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const Args = @TypeOf(args);
|
||||||
|
const Closure = struct {
|
||||||
|
arguments: Args,
|
||||||
|
pool: *Pool,
|
||||||
|
runnable: Runnable = .{ .runFn = runFn },
|
||||||
|
|
||||||
|
fn runFn(runnable: *Runnable, _: ?usize) void {
|
||||||
|
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
|
||||||
|
@call(.auto, func, closure.arguments);
|
||||||
|
closure.pool.allocator.destroy(closure);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
pool.mutex.lock();
|
||||||
|
|
||||||
|
const gpa = pool.allocator;
|
||||||
|
const closure = gpa.create(Closure) catch {
|
||||||
|
pool.mutex.unlock();
|
||||||
|
@call(.auto, func, args);
|
||||||
|
return;
|
||||||
|
};
|
||||||
|
closure.* = .{
|
||||||
|
.arguments = args,
|
||||||
|
.pool = pool,
|
||||||
|
};
|
||||||
|
|
||||||
|
pool.run_queue.prepend(&closure.runnable.node);
|
||||||
|
|
||||||
|
if (pool.threads.items.len < pool.threads.capacity) {
|
||||||
|
pool.threads.addOneAssumeCapacity().* = std.Thread.spawn(.{
|
||||||
|
.stack_size = pool.stack_size,
|
||||||
|
.allocator = gpa,
|
||||||
|
}, worker, .{pool}) catch t: {
|
||||||
|
pool.threads.items.len -= 1;
|
||||||
|
break :t undefined;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
pool.mutex.unlock();
|
||||||
|
pool.cond.signal();
|
||||||
|
}
|
||||||
|
|
||||||
|
test spawn {
|
||||||
|
const TestFn = struct {
|
||||||
|
fn checkRun(completed: *bool) void {
|
||||||
|
completed.* = true;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
var completed: bool = false;
|
||||||
|
|
||||||
|
{
|
||||||
|
var pool: Pool = undefined;
|
||||||
|
try pool.init(.{
|
||||||
|
.allocator = std.testing.allocator,
|
||||||
|
});
|
||||||
|
defer pool.deinit();
|
||||||
|
pool.spawn(TestFn.checkRun, .{&completed});
|
||||||
|
}
|
||||||
|
|
||||||
|
try std.testing.expectEqual(true, completed);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn worker(pool: *Pool) void {
|
||||||
|
pool.mutex.lock();
|
||||||
|
defer pool.mutex.unlock();
|
||||||
|
|
||||||
|
const id: ?usize = if (pool.ids.count() > 0) @intCast(pool.ids.count()) else null;
|
||||||
|
if (id) |_| pool.ids.putAssumeCapacityNoClobber(std.Thread.getCurrentId(), {});
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
while (pool.run_queue.popFirst()) |run_node| {
|
||||||
|
// Temporarily unlock the mutex in order to execute the run_node
|
||||||
|
pool.mutex.unlock();
|
||||||
|
defer pool.mutex.lock();
|
||||||
|
|
||||||
|
const runnable: *Runnable = @fieldParentPtr("node", run_node);
|
||||||
|
runnable.runFn(runnable, id);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Stop executing instead of waiting if the thread pool is no longer running.
|
||||||
|
if (pool.is_running) {
|
||||||
|
pool.cond.wait(&pool.mutex);
|
||||||
|
} else {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn waitAndWork(pool: *Pool, wait_group: *WaitGroup) void {
|
||||||
|
var id: ?usize = null;
|
||||||
|
|
||||||
|
while (!wait_group.isDone()) {
|
||||||
|
pool.mutex.lock();
|
||||||
|
if (pool.run_queue.popFirst()) |run_node| {
|
||||||
|
id = id orelse pool.ids.getIndex(std.Thread.getCurrentId());
|
||||||
|
pool.mutex.unlock();
|
||||||
|
const runnable: *Runnable = @fieldParentPtr("node", run_node);
|
||||||
|
runnable.runFn(runnable, id);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
pool.mutex.unlock();
|
||||||
|
wait_group.wait();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn getIdCount(pool: *Pool) usize {
|
||||||
|
return @intCast(1 + pool.threads.items.len);
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn io(pool: *Pool) Io {
|
||||||
|
return .{
|
||||||
|
.userdata = pool,
|
||||||
|
.vtable = &.{
|
||||||
|
.async = async,
|
||||||
|
.await = await,
|
||||||
|
.go = go,
|
||||||
|
.cancel = cancel,
|
||||||
|
.cancelRequested = cancelRequested,
|
||||||
|
.select = select,
|
||||||
|
|
||||||
|
.mutexLock = mutexLock,
|
||||||
|
.mutexUnlock = mutexUnlock,
|
||||||
|
|
||||||
|
.conditionWait = conditionWait,
|
||||||
|
.conditionWake = conditionWake,
|
||||||
|
|
||||||
|
.createFile = createFile,
|
||||||
|
.openFile = openFile,
|
||||||
|
.closeFile = closeFile,
|
||||||
|
.pread = pread,
|
||||||
|
.pwrite = pwrite,
|
||||||
|
|
||||||
|
.now = now,
|
||||||
|
.sleep = sleep,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
const AsyncClosure = struct {
|
||||||
|
func: *const fn (context: *anyopaque, result: *anyopaque) void,
|
||||||
|
runnable: Runnable = .{ .runFn = runFn },
|
||||||
|
reset_event: std.Thread.ResetEvent,
|
||||||
|
select_condition: ?*std.Thread.ResetEvent,
|
||||||
|
cancel_tid: std.Thread.Id,
|
||||||
|
context_offset: usize,
|
||||||
|
result_offset: usize,
|
||||||
|
|
||||||
|
const done_reset_event: *std.Thread.ResetEvent = @ptrFromInt(@alignOf(std.Thread.ResetEvent));
|
||||||
|
|
||||||
|
const canceling_tid: std.Thread.Id = switch (@typeInfo(std.Thread.Id)) {
|
||||||
|
.int => |int_info| switch (int_info.signedness) {
|
||||||
|
.signed => -1,
|
||||||
|
.unsigned => std.math.maxInt(std.Thread.Id),
|
||||||
|
},
|
||||||
|
.pointer => @ptrFromInt(std.math.maxInt(usize)),
|
||||||
|
else => @compileError("unsupported std.Thread.Id: " ++ @typeName(std.Thread.Id)),
|
||||||
|
};
|
||||||
|
|
||||||
|
fn runFn(runnable: *Pool.Runnable, _: ?usize) void {
|
||||||
|
const closure: *AsyncClosure = @alignCast(@fieldParentPtr("runnable", runnable));
|
||||||
|
const tid = std.Thread.getCurrentId();
|
||||||
|
if (@cmpxchgStrong(
|
||||||
|
std.Thread.Id,
|
||||||
|
&closure.cancel_tid,
|
||||||
|
0,
|
||||||
|
tid,
|
||||||
|
.acq_rel,
|
||||||
|
.acquire,
|
||||||
|
)) |cancel_tid| {
|
||||||
|
assert(cancel_tid == canceling_tid);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
current_closure = closure;
|
||||||
|
closure.func(closure.contextPointer(), closure.resultPointer());
|
||||||
|
current_closure = null;
|
||||||
|
if (@cmpxchgStrong(
|
||||||
|
std.Thread.Id,
|
||||||
|
&closure.cancel_tid,
|
||||||
|
tid,
|
||||||
|
0,
|
||||||
|
.acq_rel,
|
||||||
|
.acquire,
|
||||||
|
)) |cancel_tid| assert(cancel_tid == canceling_tid);
|
||||||
|
|
||||||
|
if (@atomicRmw(
|
||||||
|
?*std.Thread.ResetEvent,
|
||||||
|
&closure.select_condition,
|
||||||
|
.Xchg,
|
||||||
|
done_reset_event,
|
||||||
|
.release,
|
||||||
|
)) |select_reset| {
|
||||||
|
assert(select_reset != done_reset_event);
|
||||||
|
select_reset.set();
|
||||||
|
}
|
||||||
|
closure.reset_event.set();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn contextOffset(context_alignment: std.mem.Alignment) usize {
|
||||||
|
return context_alignment.forward(@sizeOf(AsyncClosure));
|
||||||
|
}
|
||||||
|
|
||||||
|
fn resultOffset(
|
||||||
|
context_alignment: std.mem.Alignment,
|
||||||
|
context_len: usize,
|
||||||
|
result_alignment: std.mem.Alignment,
|
||||||
|
) usize {
|
||||||
|
return result_alignment.forward(contextOffset(context_alignment) + context_len);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn resultPointer(closure: *AsyncClosure) [*]u8 {
|
||||||
|
const base: [*]u8 = @ptrCast(closure);
|
||||||
|
return base + closure.result_offset;
|
||||||
|
}
|
||||||
|
|
||||||
|
fn contextPointer(closure: *AsyncClosure) [*]u8 {
|
||||||
|
const base: [*]u8 = @ptrCast(closure);
|
||||||
|
return base + closure.context_offset;
|
||||||
|
}
|
||||||
|
|
||||||
|
fn waitAndFree(closure: *AsyncClosure, gpa: Allocator, result: []u8) void {
|
||||||
|
closure.reset_event.wait();
|
||||||
|
const base: [*]align(@alignOf(AsyncClosure)) u8 = @ptrCast(closure);
|
||||||
|
@memcpy(result, closure.resultPointer()[0..result.len]);
|
||||||
|
gpa.free(base[0 .. closure.result_offset + result.len]);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
fn async(
|
||||||
|
userdata: ?*anyopaque,
|
||||||
|
result: []u8,
|
||||||
|
result_alignment: std.mem.Alignment,
|
||||||
|
context: []const u8,
|
||||||
|
context_alignment: std.mem.Alignment,
|
||||||
|
start: *const fn (context: *const anyopaque, result: *anyopaque) void,
|
||||||
|
) ?*Io.AnyFuture {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
pool.mutex.lock();
|
||||||
|
|
||||||
|
const gpa = pool.allocator;
|
||||||
|
const context_offset = context_alignment.forward(@sizeOf(AsyncClosure));
|
||||||
|
const result_offset = result_alignment.forward(context_offset + context.len);
|
||||||
|
const n = result_offset + result.len;
|
||||||
|
const closure: *AsyncClosure = @alignCast(@ptrCast(gpa.alignedAlloc(u8, .of(AsyncClosure), n) catch {
|
||||||
|
pool.mutex.unlock();
|
||||||
|
start(context.ptr, result.ptr);
|
||||||
|
return null;
|
||||||
|
}));
|
||||||
|
closure.* = .{
|
||||||
|
.func = start,
|
||||||
|
.context_offset = context_offset,
|
||||||
|
.result_offset = result_offset,
|
||||||
|
.reset_event = .{},
|
||||||
|
.cancel_tid = 0,
|
||||||
|
.select_condition = null,
|
||||||
|
};
|
||||||
|
@memcpy(closure.contextPointer()[0..context.len], context);
|
||||||
|
pool.run_queue.prepend(&closure.runnable.node);
|
||||||
|
|
||||||
|
if (pool.threads.items.len < pool.threads.capacity) {
|
||||||
|
pool.threads.addOneAssumeCapacity().* = std.Thread.spawn(.{
|
||||||
|
.stack_size = pool.stack_size,
|
||||||
|
.allocator = gpa,
|
||||||
|
}, worker, .{pool}) catch t: {
|
||||||
|
pool.threads.items.len -= 1;
|
||||||
|
break :t undefined;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
pool.mutex.unlock();
|
||||||
|
pool.cond.signal();
|
||||||
|
|
||||||
|
return @ptrCast(closure);
|
||||||
|
}
|
||||||
|
|
||||||
|
const DetachedClosure = struct {
|
||||||
|
pool: *Pool,
|
||||||
|
func: *const fn (context: *anyopaque) void,
|
||||||
|
run_node: Pool.RunQueue.Node = .{ .data = .{ .runFn = runFn } },
|
||||||
|
context_alignment: std.mem.Alignment,
|
||||||
|
context_len: usize,
|
||||||
|
|
||||||
|
fn runFn(runnable: *Pool.Runnable, _: ?usize) void {
|
||||||
|
const run_node: *Pool.RunQueue.Node = @fieldParentPtr("data", runnable);
|
||||||
|
const closure: *DetachedClosure = @alignCast(@fieldParentPtr("run_node", run_node));
|
||||||
|
closure.func(closure.contextPointer());
|
||||||
|
const gpa = closure.pool.allocator;
|
||||||
|
const base: [*]align(@alignOf(DetachedClosure)) u8 = @ptrCast(closure);
|
||||||
|
gpa.free(base[0..contextEnd(closure.context_alignment, closure.context_len)]);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn contextOffset(context_alignment: std.mem.Alignment) usize {
|
||||||
|
return context_alignment.forward(@sizeOf(DetachedClosure));
|
||||||
|
}
|
||||||
|
|
||||||
|
fn contextEnd(context_alignment: std.mem.Alignment, context_len: usize) usize {
|
||||||
|
return contextOffset(context_alignment) + context_len;
|
||||||
|
}
|
||||||
|
|
||||||
|
fn contextPointer(closure: *DetachedClosure) [*]u8 {
|
||||||
|
const base: [*]u8 = @ptrCast(closure);
|
||||||
|
return base + contextOffset(closure.context_alignment);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
fn go(
|
||||||
|
userdata: ?*anyopaque,
|
||||||
|
context: []const u8,
|
||||||
|
context_alignment: std.mem.Alignment,
|
||||||
|
start: *const fn (context: *const anyopaque) void,
|
||||||
|
) void {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
pool.mutex.lock();
|
||||||
|
|
||||||
|
const gpa = pool.allocator;
|
||||||
|
const n = DetachedClosure.contextEnd(context_alignment, context.len);
|
||||||
|
const closure: *DetachedClosure = @alignCast(@ptrCast(gpa.alignedAlloc(u8, .of(DetachedClosure), n) catch {
|
||||||
|
pool.mutex.unlock();
|
||||||
|
start(context.ptr);
|
||||||
|
return;
|
||||||
|
}));
|
||||||
|
closure.* = .{
|
||||||
|
.pool = pool,
|
||||||
|
.func = start,
|
||||||
|
.context_alignment = context_alignment,
|
||||||
|
.context_len = context.len,
|
||||||
|
};
|
||||||
|
@memcpy(closure.contextPointer()[0..context.len], context);
|
||||||
|
pool.run_queue.prepend(&closure.run_node);
|
||||||
|
|
||||||
|
if (pool.threads.items.len < pool.threads.capacity) {
|
||||||
|
pool.threads.addOneAssumeCapacity().* = std.Thread.spawn(.{
|
||||||
|
.stack_size = pool.stack_size,
|
||||||
|
.allocator = gpa,
|
||||||
|
}, worker, .{pool}) catch t: {
|
||||||
|
pool.threads.items.len -= 1;
|
||||||
|
break :t undefined;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
pool.mutex.unlock();
|
||||||
|
pool.cond.signal();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn await(
|
||||||
|
userdata: ?*anyopaque,
|
||||||
|
any_future: *std.Io.AnyFuture,
|
||||||
|
result: []u8,
|
||||||
|
result_alignment: std.mem.Alignment,
|
||||||
|
) void {
|
||||||
|
_ = result_alignment;
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
const closure: *AsyncClosure = @ptrCast(@alignCast(any_future));
|
||||||
|
closure.waitAndFree(pool.allocator, result);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn cancel(
|
||||||
|
userdata: ?*anyopaque,
|
||||||
|
any_future: *Io.AnyFuture,
|
||||||
|
result: []u8,
|
||||||
|
result_alignment: std.mem.Alignment,
|
||||||
|
) void {
|
||||||
|
_ = result_alignment;
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
const closure: *AsyncClosure = @ptrCast(@alignCast(any_future));
|
||||||
|
switch (@atomicRmw(
|
||||||
|
std.Thread.Id,
|
||||||
|
&closure.cancel_tid,
|
||||||
|
.Xchg,
|
||||||
|
AsyncClosure.canceling_tid,
|
||||||
|
.acq_rel,
|
||||||
|
)) {
|
||||||
|
0, AsyncClosure.canceling_tid => {},
|
||||||
|
else => |cancel_tid| switch (builtin.os.tag) {
|
||||||
|
.linux => _ = std.os.linux.tgkill(
|
||||||
|
std.os.linux.getpid(),
|
||||||
|
@bitCast(cancel_tid),
|
||||||
|
std.posix.SIG.IO,
|
||||||
|
),
|
||||||
|
else => {},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
closure.waitAndFree(pool.allocator, result);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn cancelRequested(userdata: ?*anyopaque) bool {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
_ = pool;
|
||||||
|
const closure = current_closure orelse return false;
|
||||||
|
return @atomicLoad(std.Thread.Id, &closure.cancel_tid, .acquire) == AsyncClosure.canceling_tid;
|
||||||
|
}
|
||||||
|
|
||||||
|
fn checkCancel(pool: *Pool) error{Canceled}!void {
|
||||||
|
if (cancelRequested(pool)) return error.Canceled;
|
||||||
|
}
|
||||||
|
|
||||||
|
fn mutexLock(userdata: ?*anyopaque, prev_state: Io.Mutex.State, mutex: *Io.Mutex) error{Canceled}!void {
|
||||||
|
_ = userdata;
|
||||||
|
if (prev_state == .contended) {
|
||||||
|
std.Thread.Futex.wait(@ptrCast(&mutex.state), @intFromEnum(Io.Mutex.State.contended));
|
||||||
|
}
|
||||||
|
while (@atomicRmw(
|
||||||
|
Io.Mutex.State,
|
||||||
|
&mutex.state,
|
||||||
|
.Xchg,
|
||||||
|
.contended,
|
||||||
|
.acquire,
|
||||||
|
) != .unlocked) {
|
||||||
|
std.Thread.Futex.wait(@ptrCast(&mutex.state), @intFromEnum(Io.Mutex.State.contended));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fn mutexUnlock(userdata: ?*anyopaque, prev_state: Io.Mutex.State, mutex: *Io.Mutex) void {
|
||||||
|
_ = userdata;
|
||||||
|
_ = prev_state;
|
||||||
|
if (@atomicRmw(Io.Mutex.State, &mutex.state, .Xchg, .unlocked, .release) == .contended) {
|
||||||
|
std.Thread.Futex.wake(@ptrCast(&mutex.state), 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn conditionWait(userdata: ?*anyopaque, cond: *Io.Condition, mutex: *Io.Mutex) Io.Cancelable!void {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
comptime assert(@TypeOf(cond.state) == u64);
|
||||||
|
const ints: *[2]std.atomic.Value(u32) = @ptrCast(&cond.state);
|
||||||
|
const cond_state = &ints[0];
|
||||||
|
const cond_epoch = &ints[1];
|
||||||
|
const one_waiter = 1;
|
||||||
|
const waiter_mask = 0xffff;
|
||||||
|
const one_signal = 1 << 16;
|
||||||
|
const signal_mask = 0xffff << 16;
|
||||||
|
// Observe the epoch, then check the state again to see if we should wake up.
|
||||||
|
// The epoch must be observed before we check the state or we could potentially miss a wake() and deadlock:
|
||||||
|
//
|
||||||
|
// - T1: s = LOAD(&state)
|
||||||
|
// - T2: UPDATE(&s, signal)
|
||||||
|
// - T2: UPDATE(&epoch, 1) + FUTEX_WAKE(&epoch)
|
||||||
|
// - T1: e = LOAD(&epoch) (was reordered after the state load)
|
||||||
|
// - T1: s & signals == 0 -> FUTEX_WAIT(&epoch, e) (missed the state update + the epoch change)
|
||||||
|
//
|
||||||
|
// Acquire barrier to ensure the epoch load happens before the state load.
|
||||||
|
var epoch = cond_epoch.load(.acquire);
|
||||||
|
var state = cond_state.fetchAdd(one_waiter, .monotonic);
|
||||||
|
assert(state & waiter_mask != waiter_mask);
|
||||||
|
state += one_waiter;
|
||||||
|
|
||||||
|
mutex.unlock(pool.io());
|
||||||
|
defer mutex.lock(pool.io()) catch @panic("TODO");
|
||||||
|
|
||||||
|
var futex_deadline = std.Thread.Futex.Deadline.init(null);
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
futex_deadline.wait(cond_epoch, epoch) catch |err| switch (err) {
|
||||||
|
error.Timeout => unreachable,
|
||||||
|
};
|
||||||
|
|
||||||
|
epoch = cond_epoch.load(.acquire);
|
||||||
|
state = cond_state.load(.monotonic);
|
||||||
|
|
||||||
|
// Try to wake up by consuming a signal and decremented the waiter we added previously.
|
||||||
|
// Acquire barrier ensures code before the wake() which added the signal happens before we decrement it and return.
|
||||||
|
while (state & signal_mask != 0) {
|
||||||
|
const new_state = state - one_waiter - one_signal;
|
||||||
|
state = cond_state.cmpxchgWeak(state, new_state, .acquire, .monotonic) orelse return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn conditionWake(userdata: ?*anyopaque, cond: *Io.Condition, wake: Io.Condition.Wake) void {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
_ = pool;
|
||||||
|
comptime assert(@TypeOf(cond.state) == u64);
|
||||||
|
const ints: *[2]std.atomic.Value(u32) = @ptrCast(&cond.state);
|
||||||
|
const cond_state = &ints[0];
|
||||||
|
const cond_epoch = &ints[1];
|
||||||
|
const one_waiter = 1;
|
||||||
|
const waiter_mask = 0xffff;
|
||||||
|
const one_signal = 1 << 16;
|
||||||
|
const signal_mask = 0xffff << 16;
|
||||||
|
var state = cond_state.load(.monotonic);
|
||||||
|
while (true) {
|
||||||
|
const waiters = (state & waiter_mask) / one_waiter;
|
||||||
|
const signals = (state & signal_mask) / one_signal;
|
||||||
|
|
||||||
|
// Reserves which waiters to wake up by incrementing the signals count.
|
||||||
|
// Therefore, the signals count is always less than or equal to the waiters count.
|
||||||
|
// We don't need to Futex.wake if there's nothing to wake up or if other wake() threads have reserved to wake up the current waiters.
|
||||||
|
const wakeable = waiters - signals;
|
||||||
|
if (wakeable == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const to_wake = switch (wake) {
|
||||||
|
.one => 1,
|
||||||
|
.all => wakeable,
|
||||||
|
};
|
||||||
|
|
||||||
|
// Reserve the amount of waiters to wake by incrementing the signals count.
|
||||||
|
// Release barrier ensures code before the wake() happens before the signal it posted and consumed by the wait() threads.
|
||||||
|
const new_state = state + (one_signal * to_wake);
|
||||||
|
state = cond_state.cmpxchgWeak(state, new_state, .release, .monotonic) orelse {
|
||||||
|
// Wake up the waiting threads we reserved above by changing the epoch value.
|
||||||
|
// NOTE: a waiting thread could miss a wake up if *exactly* ((1<<32)-1) wake()s happen between it observing the epoch and sleeping on it.
|
||||||
|
// This is very unlikely due to how many precise amount of Futex.wake() calls that would be between the waiting thread's potential preemption.
|
||||||
|
//
|
||||||
|
// Release barrier ensures the signal being added to the state happens before the epoch is changed.
|
||||||
|
// If not, the waiting thread could potentially deadlock from missing both the state and epoch change:
|
||||||
|
//
|
||||||
|
// - T2: UPDATE(&epoch, 1) (reordered before the state change)
|
||||||
|
// - T1: e = LOAD(&epoch)
|
||||||
|
// - T1: s = LOAD(&state)
|
||||||
|
// - T2: UPDATE(&state, signal) + FUTEX_WAKE(&epoch)
|
||||||
|
// - T1: s & signals == 0 -> FUTEX_WAIT(&epoch, e) (missed both epoch change and state change)
|
||||||
|
_ = cond_epoch.fetchAdd(1, .release);
|
||||||
|
std.Thread.Futex.wake(cond_epoch, to_wake);
|
||||||
|
return;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn createFile(
|
||||||
|
userdata: ?*anyopaque,
|
||||||
|
dir: Io.Dir,
|
||||||
|
sub_path: []const u8,
|
||||||
|
flags: Io.File.CreateFlags,
|
||||||
|
) Io.File.OpenError!Io.File {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
try pool.checkCancel();
|
||||||
|
const fs_dir: std.fs.Dir = .{ .fd = dir.handle };
|
||||||
|
const fs_file = try fs_dir.createFile(sub_path, flags);
|
||||||
|
return .{ .handle = fs_file.handle };
|
||||||
|
}
|
||||||
|
|
||||||
|
fn openFile(
|
||||||
|
userdata: ?*anyopaque,
|
||||||
|
dir: Io.Dir,
|
||||||
|
sub_path: []const u8,
|
||||||
|
flags: Io.File.OpenFlags,
|
||||||
|
) Io.File.OpenError!Io.File {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
try pool.checkCancel();
|
||||||
|
const fs_dir: std.fs.Dir = .{ .fd = dir.handle };
|
||||||
|
const fs_file = try fs_dir.openFile(sub_path, flags);
|
||||||
|
return .{ .handle = fs_file.handle };
|
||||||
|
}
|
||||||
|
|
||||||
|
fn closeFile(userdata: ?*anyopaque, file: Io.File) void {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
_ = pool;
|
||||||
|
const fs_file: std.fs.File = .{ .handle = file.handle };
|
||||||
|
return fs_file.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
fn pread(userdata: ?*anyopaque, file: Io.File, buffer: []u8, offset: std.posix.off_t) Io.File.PReadError!usize {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
try pool.checkCancel();
|
||||||
|
const fs_file: std.fs.File = .{ .handle = file.handle };
|
||||||
|
return switch (offset) {
|
||||||
|
-1 => fs_file.read(buffer),
|
||||||
|
else => fs_file.pread(buffer, @bitCast(offset)),
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
fn pwrite(userdata: ?*anyopaque, file: Io.File, buffer: []const u8, offset: std.posix.off_t) Io.File.PWriteError!usize {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
try pool.checkCancel();
|
||||||
|
const fs_file: std.fs.File = .{ .handle = file.handle };
|
||||||
|
return switch (offset) {
|
||||||
|
-1 => fs_file.write(buffer),
|
||||||
|
else => fs_file.pwrite(buffer, @bitCast(offset)),
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
fn now(userdata: ?*anyopaque, clockid: std.posix.clockid_t) Io.ClockGetTimeError!Io.Timestamp {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
try pool.checkCancel();
|
||||||
|
const timespec = try std.posix.clock_gettime(clockid);
|
||||||
|
return @enumFromInt(@as(i128, timespec.sec) * std.time.ns_per_s + timespec.nsec);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn sleep(userdata: ?*anyopaque, clockid: std.posix.clockid_t, deadline: Io.Deadline) Io.SleepError!void {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
const deadline_nanoseconds: i96 = switch (deadline) {
|
||||||
|
.duration => |duration| duration.nanoseconds,
|
||||||
|
.timestamp => |timestamp| @intFromEnum(timestamp),
|
||||||
|
};
|
||||||
|
var timespec: std.posix.timespec = .{
|
||||||
|
.sec = @intCast(@divFloor(deadline_nanoseconds, std.time.ns_per_s)),
|
||||||
|
.nsec = @intCast(@mod(deadline_nanoseconds, std.time.ns_per_s)),
|
||||||
|
};
|
||||||
|
while (true) {
|
||||||
|
try pool.checkCancel();
|
||||||
|
switch (std.os.linux.E.init(std.os.linux.clock_nanosleep(clockid, .{ .ABSTIME = switch (deadline) {
|
||||||
|
.duration => false,
|
||||||
|
.timestamp => true,
|
||||||
|
} }, ×pec, ×pec))) {
|
||||||
|
.SUCCESS => return,
|
||||||
|
.FAULT => unreachable,
|
||||||
|
.INTR => {},
|
||||||
|
.INVAL => return error.UnsupportedClock,
|
||||||
|
else => |err| return std.posix.unexpectedErrno(err),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn select(userdata: ?*anyopaque, futures: []const *Io.AnyFuture) usize {
|
||||||
|
const pool: *Pool = @alignCast(@ptrCast(userdata));
|
||||||
|
_ = pool;
|
||||||
|
|
||||||
|
var reset_event: std.Thread.ResetEvent = .{};
|
||||||
|
|
||||||
|
for (futures, 0..) |future, i| {
|
||||||
|
const closure: *AsyncClosure = @ptrCast(@alignCast(future));
|
||||||
|
if (@atomicRmw(?*std.Thread.ResetEvent, &closure.select_condition, .Xchg, &reset_event, .seq_cst) == AsyncClosure.done_reset_event) {
|
||||||
|
for (futures[0..i]) |cleanup_future| {
|
||||||
|
const cleanup_closure: *AsyncClosure = @ptrCast(@alignCast(cleanup_future));
|
||||||
|
if (@atomicRmw(?*std.Thread.ResetEvent, &cleanup_closure.select_condition, .Xchg, null, .seq_cst) == AsyncClosure.done_reset_event) {
|
||||||
|
cleanup_closure.reset_event.wait(); // Ensure no reference to our stack-allocated reset_event.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
reset_event.wait();
|
||||||
|
|
||||||
|
var result: ?usize = null;
|
||||||
|
for (futures, 0..) |future, i| {
|
||||||
|
const closure: *AsyncClosure = @ptrCast(@alignCast(future));
|
||||||
|
if (@atomicRmw(?*std.Thread.ResetEvent, &closure.select_condition, .Xchg, null, .seq_cst) == AsyncClosure.done_reset_event) {
|
||||||
|
closure.reset_event.wait(); // Ensure no reference to our stack-allocated reset_event.
|
||||||
|
if (result == null) result = i; // In case multiple are ready, return first.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return result.?;
|
||||||
|
}
|
||||||
|
|
@ -1,34 +1,27 @@
|
||||||
const builtin = @import("builtin");
|
|
||||||
const std = @import("std");
|
const std = @import("std");
|
||||||
const Allocator = std.mem.Allocator;
|
const builtin = @import("builtin");
|
||||||
const assert = std.debug.assert;
|
|
||||||
const WaitGroup = @import("WaitGroup.zig");
|
|
||||||
const Io = std.Io;
|
|
||||||
const Pool = @This();
|
const Pool = @This();
|
||||||
|
const WaitGroup = @import("WaitGroup.zig");
|
||||||
|
|
||||||
/// Must be a thread-safe allocator.
|
|
||||||
allocator: std.mem.Allocator,
|
|
||||||
mutex: std.Thread.Mutex = .{},
|
mutex: std.Thread.Mutex = .{},
|
||||||
cond: std.Thread.Condition = .{},
|
cond: std.Thread.Condition = .{},
|
||||||
run_queue: std.SinglyLinkedList = .{},
|
run_queue: std.SinglyLinkedList = .{},
|
||||||
is_running: bool = true,
|
is_running: bool = true,
|
||||||
threads: std.ArrayListUnmanaged(std.Thread),
|
allocator: std.mem.Allocator,
|
||||||
|
threads: if (builtin.single_threaded) [0]std.Thread else []std.Thread,
|
||||||
ids: if (builtin.single_threaded) struct {
|
ids: if (builtin.single_threaded) struct {
|
||||||
inline fn deinit(_: @This(), _: std.mem.Allocator) void {}
|
inline fn deinit(_: @This(), _: std.mem.Allocator) void {}
|
||||||
fn getIndex(_: @This(), _: std.Thread.Id) usize {
|
fn getIndex(_: @This(), _: std.Thread.Id) usize {
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
} else std.AutoArrayHashMapUnmanaged(std.Thread.Id, void),
|
} else std.AutoArrayHashMapUnmanaged(std.Thread.Id, void),
|
||||||
stack_size: usize,
|
|
||||||
|
|
||||||
threadlocal var current_closure: ?*AsyncClosure = null;
|
const Runnable = struct {
|
||||||
|
|
||||||
pub const Runnable = struct {
|
|
||||||
runFn: RunProto,
|
runFn: RunProto,
|
||||||
node: std.SinglyLinkedList.Node = .{},
|
node: std.SinglyLinkedList.Node = .{},
|
||||||
};
|
};
|
||||||
|
|
||||||
pub const RunProto = *const fn (*Runnable, id: ?usize) void;
|
const RunProto = *const fn (*Runnable, id: ?usize) void;
|
||||||
|
|
||||||
pub const Options = struct {
|
pub const Options = struct {
|
||||||
allocator: std.mem.Allocator,
|
allocator: std.mem.Allocator,
|
||||||
|
|
@ -38,36 +31,48 @@ pub const Options = struct {
|
||||||
};
|
};
|
||||||
|
|
||||||
pub fn init(pool: *Pool, options: Options) !void {
|
pub fn init(pool: *Pool, options: Options) !void {
|
||||||
const gpa = options.allocator;
|
const allocator = options.allocator;
|
||||||
const thread_count = options.n_jobs orelse @max(1, std.Thread.getCpuCount() catch 1);
|
|
||||||
const threads = try gpa.alloc(std.Thread, thread_count);
|
|
||||||
errdefer gpa.free(threads);
|
|
||||||
|
|
||||||
pool.* = .{
|
pool.* = .{
|
||||||
.allocator = gpa,
|
.allocator = allocator,
|
||||||
.threads = .initBuffer(threads),
|
.threads = if (builtin.single_threaded) .{} else &.{},
|
||||||
.ids = .{},
|
.ids = .{},
|
||||||
.stack_size = options.stack_size,
|
|
||||||
};
|
};
|
||||||
|
|
||||||
if (builtin.single_threaded) return;
|
if (builtin.single_threaded) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const thread_count = options.n_jobs orelse @max(1, std.Thread.getCpuCount() catch 1);
|
||||||
if (options.track_ids) {
|
if (options.track_ids) {
|
||||||
try pool.ids.ensureTotalCapacity(gpa, 1 + thread_count);
|
try pool.ids.ensureTotalCapacity(allocator, 1 + thread_count);
|
||||||
pool.ids.putAssumeCapacityNoClobber(std.Thread.getCurrentId(), {});
|
pool.ids.putAssumeCapacityNoClobber(std.Thread.getCurrentId(), {});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// kill and join any threads we spawned and free memory on error.
|
||||||
|
pool.threads = try allocator.alloc(std.Thread, thread_count);
|
||||||
|
var spawned: usize = 0;
|
||||||
|
errdefer pool.join(spawned);
|
||||||
|
|
||||||
|
for (pool.threads) |*thread| {
|
||||||
|
thread.* = try std.Thread.spawn(.{
|
||||||
|
.stack_size = options.stack_size,
|
||||||
|
.allocator = allocator,
|
||||||
|
}, worker, .{pool});
|
||||||
|
spawned += 1;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn deinit(pool: *Pool) void {
|
pub fn deinit(pool: *Pool) void {
|
||||||
const gpa = pool.allocator;
|
pool.join(pool.threads.len); // kill and join all threads.
|
||||||
pool.join();
|
pool.ids.deinit(pool.allocator);
|
||||||
pool.threads.deinit(gpa);
|
|
||||||
pool.ids.deinit(gpa);
|
|
||||||
pool.* = undefined;
|
pool.* = undefined;
|
||||||
}
|
}
|
||||||
|
|
||||||
fn join(pool: *Pool) void {
|
fn join(pool: *Pool, spawned: usize) void {
|
||||||
if (builtin.single_threaded) return;
|
if (builtin.single_threaded) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
pool.mutex.lock();
|
pool.mutex.lock();
|
||||||
|
|
@ -80,7 +85,11 @@ fn join(pool: *Pool) void {
|
||||||
// wake up any sleeping threads (this can be done outside the mutex)
|
// wake up any sleeping threads (this can be done outside the mutex)
|
||||||
// then wait for all the threads we know are spawned to complete.
|
// then wait for all the threads we know are spawned to complete.
|
||||||
pool.cond.broadcast();
|
pool.cond.broadcast();
|
||||||
for (pool.threads.items) |thread| thread.join();
|
for (pool.threads[0..spawned]) |thread| {
|
||||||
|
thread.join();
|
||||||
|
}
|
||||||
|
|
||||||
|
pool.allocator.free(pool.threads);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Runs `func` in the thread pool, calling `WaitGroup.start` beforehand, and
|
/// Runs `func` in the thread pool, calling `WaitGroup.start` beforehand, and
|
||||||
|
|
@ -108,38 +117,36 @@ pub fn spawnWg(pool: *Pool, wait_group: *WaitGroup, comptime func: anytype, args
|
||||||
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
|
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
|
||||||
@call(.auto, func, closure.arguments);
|
@call(.auto, func, closure.arguments);
|
||||||
closure.wait_group.finish();
|
closure.wait_group.finish();
|
||||||
|
|
||||||
|
// The thread pool's allocator is protected by the mutex.
|
||||||
|
const mutex = &closure.pool.mutex;
|
||||||
|
mutex.lock();
|
||||||
|
defer mutex.unlock();
|
||||||
|
|
||||||
closure.pool.allocator.destroy(closure);
|
closure.pool.allocator.destroy(closure);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
pool.mutex.lock();
|
{
|
||||||
|
pool.mutex.lock();
|
||||||
|
|
||||||
const gpa = pool.allocator;
|
const closure = pool.allocator.create(Closure) catch {
|
||||||
const closure = gpa.create(Closure) catch {
|
pool.mutex.unlock();
|
||||||
pool.mutex.unlock();
|
@call(.auto, func, args);
|
||||||
@call(.auto, func, args);
|
wait_group.finish();
|
||||||
wait_group.finish();
|
return;
|
||||||
return;
|
|
||||||
};
|
|
||||||
closure.* = .{
|
|
||||||
.arguments = args,
|
|
||||||
.pool = pool,
|
|
||||||
.wait_group = wait_group,
|
|
||||||
};
|
|
||||||
|
|
||||||
pool.run_queue.prepend(&closure.runnable.node);
|
|
||||||
|
|
||||||
if (pool.threads.items.len < pool.threads.capacity) {
|
|
||||||
pool.threads.addOneAssumeCapacity().* = std.Thread.spawn(.{
|
|
||||||
.stack_size = pool.stack_size,
|
|
||||||
.allocator = gpa,
|
|
||||||
}, worker, .{pool}) catch t: {
|
|
||||||
pool.threads.items.len -= 1;
|
|
||||||
break :t undefined;
|
|
||||||
};
|
};
|
||||||
|
closure.* = .{
|
||||||
|
.arguments = args,
|
||||||
|
.pool = pool,
|
||||||
|
.wait_group = wait_group,
|
||||||
|
};
|
||||||
|
|
||||||
|
pool.run_queue.prepend(&closure.runnable.node);
|
||||||
|
pool.mutex.unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
pool.mutex.unlock();
|
// Notify waiting threads outside the lock to try and keep the critical section small.
|
||||||
pool.cond.signal();
|
pool.cond.signal();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -172,43 +179,41 @@ pub fn spawnWgId(pool: *Pool, wait_group: *WaitGroup, comptime func: anytype, ar
|
||||||
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
|
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
|
||||||
@call(.auto, func, .{id.?} ++ closure.arguments);
|
@call(.auto, func, .{id.?} ++ closure.arguments);
|
||||||
closure.wait_group.finish();
|
closure.wait_group.finish();
|
||||||
|
|
||||||
|
// The thread pool's allocator is protected by the mutex.
|
||||||
|
const mutex = &closure.pool.mutex;
|
||||||
|
mutex.lock();
|
||||||
|
defer mutex.unlock();
|
||||||
|
|
||||||
closure.pool.allocator.destroy(closure);
|
closure.pool.allocator.destroy(closure);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
pool.mutex.lock();
|
{
|
||||||
|
pool.mutex.lock();
|
||||||
|
|
||||||
const gpa = pool.allocator;
|
const closure = pool.allocator.create(Closure) catch {
|
||||||
const closure = gpa.create(Closure) catch {
|
const id: ?usize = pool.ids.getIndex(std.Thread.getCurrentId());
|
||||||
const id: ?usize = pool.ids.getIndex(std.Thread.getCurrentId());
|
pool.mutex.unlock();
|
||||||
pool.mutex.unlock();
|
@call(.auto, func, .{id.?} ++ args);
|
||||||
@call(.auto, func, .{id.?} ++ args);
|
wait_group.finish();
|
||||||
wait_group.finish();
|
return;
|
||||||
return;
|
|
||||||
};
|
|
||||||
closure.* = .{
|
|
||||||
.arguments = args,
|
|
||||||
.pool = pool,
|
|
||||||
.wait_group = wait_group,
|
|
||||||
};
|
|
||||||
|
|
||||||
pool.run_queue.prepend(&closure.runnable.node);
|
|
||||||
|
|
||||||
if (pool.threads.items.len < pool.threads.capacity) {
|
|
||||||
pool.threads.addOneAssumeCapacity().* = std.Thread.spawn(.{
|
|
||||||
.stack_size = pool.stack_size,
|
|
||||||
.allocator = gpa,
|
|
||||||
}, worker, .{pool}) catch t: {
|
|
||||||
pool.threads.items.len -= 1;
|
|
||||||
break :t undefined;
|
|
||||||
};
|
};
|
||||||
|
closure.* = .{
|
||||||
|
.arguments = args,
|
||||||
|
.pool = pool,
|
||||||
|
.wait_group = wait_group,
|
||||||
|
};
|
||||||
|
|
||||||
|
pool.run_queue.prepend(&closure.runnable.node);
|
||||||
|
pool.mutex.unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
pool.mutex.unlock();
|
// Notify waiting threads outside the lock to try and keep the critical section small.
|
||||||
pool.cond.signal();
|
pool.cond.signal();
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn spawn(pool: *Pool, comptime func: anytype, args: anytype) void {
|
pub fn spawn(pool: *Pool, comptime func: anytype, args: anytype) !void {
|
||||||
if (builtin.single_threaded) {
|
if (builtin.single_threaded) {
|
||||||
@call(.auto, func, args);
|
@call(.auto, func, args);
|
||||||
return;
|
return;
|
||||||
|
|
@ -223,36 +228,30 @@ pub fn spawn(pool: *Pool, comptime func: anytype, args: anytype) void {
|
||||||
fn runFn(runnable: *Runnable, _: ?usize) void {
|
fn runFn(runnable: *Runnable, _: ?usize) void {
|
||||||
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
|
const closure: *@This() = @alignCast(@fieldParentPtr("runnable", runnable));
|
||||||
@call(.auto, func, closure.arguments);
|
@call(.auto, func, closure.arguments);
|
||||||
|
|
||||||
|
// The thread pool's allocator is protected by the mutex.
|
||||||
|
const mutex = &closure.pool.mutex;
|
||||||
|
mutex.lock();
|
||||||
|
defer mutex.unlock();
|
||||||
|
|
||||||
closure.pool.allocator.destroy(closure);
|
closure.pool.allocator.destroy(closure);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
pool.mutex.lock();
|
{
|
||||||
|
pool.mutex.lock();
|
||||||
|
defer pool.mutex.unlock();
|
||||||
|
|
||||||
const gpa = pool.allocator;
|
const closure = try pool.allocator.create(Closure);
|
||||||
const closure = gpa.create(Closure) catch {
|
closure.* = .{
|
||||||
pool.mutex.unlock();
|
.arguments = args,
|
||||||
@call(.auto, func, args);
|
.pool = pool,
|
||||||
return;
|
|
||||||
};
|
|
||||||
closure.* = .{
|
|
||||||
.arguments = args,
|
|
||||||
.pool = pool,
|
|
||||||
};
|
|
||||||
|
|
||||||
pool.run_queue.prepend(&closure.runnable.node);
|
|
||||||
|
|
||||||
if (pool.threads.items.len < pool.threads.capacity) {
|
|
||||||
pool.threads.addOneAssumeCapacity().* = std.Thread.spawn(.{
|
|
||||||
.stack_size = pool.stack_size,
|
|
||||||
.allocator = gpa,
|
|
||||||
}, worker, .{pool}) catch t: {
|
|
||||||
pool.threads.items.len -= 1;
|
|
||||||
break :t undefined;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
pool.run_queue.prepend(&closure.runnable.node);
|
||||||
}
|
}
|
||||||
|
|
||||||
pool.mutex.unlock();
|
// Notify waiting threads outside the lock to try and keep the critical section small.
|
||||||
pool.cond.signal();
|
pool.cond.signal();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -271,7 +270,7 @@ test spawn {
|
||||||
.allocator = std.testing.allocator,
|
.allocator = std.testing.allocator,
|
||||||
});
|
});
|
||||||
defer pool.deinit();
|
defer pool.deinit();
|
||||||
pool.spawn(TestFn.checkRun, .{&completed});
|
try pool.spawn(TestFn.checkRun, .{&completed});
|
||||||
}
|
}
|
||||||
|
|
||||||
try std.testing.expectEqual(true, completed);
|
try std.testing.expectEqual(true, completed);
|
||||||
|
|
@ -323,530 +322,5 @@ pub fn waitAndWork(pool: *Pool, wait_group: *WaitGroup) void {
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn getIdCount(pool: *Pool) usize {
|
pub fn getIdCount(pool: *Pool) usize {
|
||||||
return @intCast(1 + pool.threads.items.len);
|
return @intCast(1 + pool.threads.len);
|
||||||
}
|
|
||||||
|
|
||||||
pub fn io(pool: *Pool) Io {
|
|
||||||
return .{
|
|
||||||
.userdata = pool,
|
|
||||||
.vtable = &.{
|
|
||||||
.async = async,
|
|
||||||
.await = await,
|
|
||||||
.go = go,
|
|
||||||
.cancel = cancel,
|
|
||||||
.cancelRequested = cancelRequested,
|
|
||||||
.select = select,
|
|
||||||
|
|
||||||
.mutexLock = mutexLock,
|
|
||||||
.mutexUnlock = mutexUnlock,
|
|
||||||
|
|
||||||
.conditionWait = conditionWait,
|
|
||||||
.conditionWake = conditionWake,
|
|
||||||
|
|
||||||
.createFile = createFile,
|
|
||||||
.openFile = openFile,
|
|
||||||
.closeFile = closeFile,
|
|
||||||
.pread = pread,
|
|
||||||
.pwrite = pwrite,
|
|
||||||
|
|
||||||
.now = now,
|
|
||||||
.sleep = sleep,
|
|
||||||
},
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
const AsyncClosure = struct {
|
|
||||||
func: *const fn (context: *anyopaque, result: *anyopaque) void,
|
|
||||||
runnable: Runnable = .{ .runFn = runFn },
|
|
||||||
reset_event: std.Thread.ResetEvent,
|
|
||||||
select_condition: ?*std.Thread.ResetEvent,
|
|
||||||
cancel_tid: std.Thread.Id,
|
|
||||||
context_offset: usize,
|
|
||||||
result_offset: usize,
|
|
||||||
|
|
||||||
const done_reset_event: *std.Thread.ResetEvent = @ptrFromInt(@alignOf(std.Thread.ResetEvent));
|
|
||||||
|
|
||||||
const canceling_tid: std.Thread.Id = switch (@typeInfo(std.Thread.Id)) {
|
|
||||||
.int => |int_info| switch (int_info.signedness) {
|
|
||||||
.signed => -1,
|
|
||||||
.unsigned => std.math.maxInt(std.Thread.Id),
|
|
||||||
},
|
|
||||||
.pointer => @ptrFromInt(std.math.maxInt(usize)),
|
|
||||||
else => @compileError("unsupported std.Thread.Id: " ++ @typeName(std.Thread.Id)),
|
|
||||||
};
|
|
||||||
|
|
||||||
fn runFn(runnable: *std.Thread.Pool.Runnable, _: ?usize) void {
|
|
||||||
const closure: *AsyncClosure = @alignCast(@fieldParentPtr("runnable", runnable));
|
|
||||||
const tid = std.Thread.getCurrentId();
|
|
||||||
if (@cmpxchgStrong(
|
|
||||||
std.Thread.Id,
|
|
||||||
&closure.cancel_tid,
|
|
||||||
0,
|
|
||||||
tid,
|
|
||||||
.acq_rel,
|
|
||||||
.acquire,
|
|
||||||
)) |cancel_tid| {
|
|
||||||
assert(cancel_tid == canceling_tid);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
current_closure = closure;
|
|
||||||
closure.func(closure.contextPointer(), closure.resultPointer());
|
|
||||||
current_closure = null;
|
|
||||||
if (@cmpxchgStrong(
|
|
||||||
std.Thread.Id,
|
|
||||||
&closure.cancel_tid,
|
|
||||||
tid,
|
|
||||||
0,
|
|
||||||
.acq_rel,
|
|
||||||
.acquire,
|
|
||||||
)) |cancel_tid| assert(cancel_tid == canceling_tid);
|
|
||||||
|
|
||||||
if (@atomicRmw(
|
|
||||||
?*std.Thread.ResetEvent,
|
|
||||||
&closure.select_condition,
|
|
||||||
.Xchg,
|
|
||||||
done_reset_event,
|
|
||||||
.release,
|
|
||||||
)) |select_reset| {
|
|
||||||
assert(select_reset != done_reset_event);
|
|
||||||
select_reset.set();
|
|
||||||
}
|
|
||||||
closure.reset_event.set();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn contextOffset(context_alignment: std.mem.Alignment) usize {
|
|
||||||
return context_alignment.forward(@sizeOf(AsyncClosure));
|
|
||||||
}
|
|
||||||
|
|
||||||
fn resultOffset(
|
|
||||||
context_alignment: std.mem.Alignment,
|
|
||||||
context_len: usize,
|
|
||||||
result_alignment: std.mem.Alignment,
|
|
||||||
) usize {
|
|
||||||
return result_alignment.forward(contextOffset(context_alignment) + context_len);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn resultPointer(closure: *AsyncClosure) [*]u8 {
|
|
||||||
const base: [*]u8 = @ptrCast(closure);
|
|
||||||
return base + closure.result_offset;
|
|
||||||
}
|
|
||||||
|
|
||||||
fn contextPointer(closure: *AsyncClosure) [*]u8 {
|
|
||||||
const base: [*]u8 = @ptrCast(closure);
|
|
||||||
return base + closure.context_offset;
|
|
||||||
}
|
|
||||||
|
|
||||||
fn waitAndFree(closure: *AsyncClosure, gpa: Allocator, result: []u8) void {
|
|
||||||
closure.reset_event.wait();
|
|
||||||
const base: [*]align(@alignOf(AsyncClosure)) u8 = @ptrCast(closure);
|
|
||||||
@memcpy(result, closure.resultPointer()[0..result.len]);
|
|
||||||
gpa.free(base[0 .. closure.result_offset + result.len]);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
fn async(
|
|
||||||
userdata: ?*anyopaque,
|
|
||||||
result: []u8,
|
|
||||||
result_alignment: std.mem.Alignment,
|
|
||||||
context: []const u8,
|
|
||||||
context_alignment: std.mem.Alignment,
|
|
||||||
start: *const fn (context: *const anyopaque, result: *anyopaque) void,
|
|
||||||
) ?*Io.AnyFuture {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
pool.mutex.lock();
|
|
||||||
|
|
||||||
const gpa = pool.allocator;
|
|
||||||
const context_offset = context_alignment.forward(@sizeOf(AsyncClosure));
|
|
||||||
const result_offset = result_alignment.forward(context_offset + context.len);
|
|
||||||
const n = result_offset + result.len;
|
|
||||||
const closure: *AsyncClosure = @alignCast(@ptrCast(gpa.alignedAlloc(u8, @alignOf(AsyncClosure), n) catch {
|
|
||||||
pool.mutex.unlock();
|
|
||||||
start(context.ptr, result.ptr);
|
|
||||||
return null;
|
|
||||||
}));
|
|
||||||
closure.* = .{
|
|
||||||
.func = start,
|
|
||||||
.context_offset = context_offset,
|
|
||||||
.result_offset = result_offset,
|
|
||||||
.reset_event = .{},
|
|
||||||
.cancel_tid = 0,
|
|
||||||
.select_condition = null,
|
|
||||||
};
|
|
||||||
@memcpy(closure.contextPointer()[0..context.len], context);
|
|
||||||
pool.run_queue.prepend(&closure.runnable.node);
|
|
||||||
|
|
||||||
if (pool.threads.items.len < pool.threads.capacity) {
|
|
||||||
pool.threads.addOneAssumeCapacity().* = std.Thread.spawn(.{
|
|
||||||
.stack_size = pool.stack_size,
|
|
||||||
.allocator = gpa,
|
|
||||||
}, worker, .{pool}) catch t: {
|
|
||||||
pool.threads.items.len -= 1;
|
|
||||||
break :t undefined;
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
pool.mutex.unlock();
|
|
||||||
pool.cond.signal();
|
|
||||||
|
|
||||||
return @ptrCast(closure);
|
|
||||||
}
|
|
||||||
|
|
||||||
const DetachedClosure = struct {
|
|
||||||
pool: *Pool,
|
|
||||||
func: *const fn (context: *anyopaque) void,
|
|
||||||
run_node: std.Thread.Pool.RunQueue.Node = .{ .data = .{ .runFn = runFn } },
|
|
||||||
context_alignment: std.mem.Alignment,
|
|
||||||
context_len: usize,
|
|
||||||
|
|
||||||
fn runFn(runnable: *std.Thread.Pool.Runnable, _: ?usize) void {
|
|
||||||
const run_node: *std.Thread.Pool.RunQueue.Node = @fieldParentPtr("data", runnable);
|
|
||||||
const closure: *DetachedClosure = @alignCast(@fieldParentPtr("run_node", run_node));
|
|
||||||
closure.func(closure.contextPointer());
|
|
||||||
const gpa = closure.pool.allocator;
|
|
||||||
const base: [*]align(@alignOf(DetachedClosure)) u8 = @ptrCast(closure);
|
|
||||||
gpa.free(base[0..contextEnd(closure.context_alignment, closure.context_len)]);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn contextOffset(context_alignment: std.mem.Alignment) usize {
|
|
||||||
return context_alignment.forward(@sizeOf(DetachedClosure));
|
|
||||||
}
|
|
||||||
|
|
||||||
fn contextEnd(context_alignment: std.mem.Alignment, context_len: usize) usize {
|
|
||||||
return contextOffset(context_alignment) + context_len;
|
|
||||||
}
|
|
||||||
|
|
||||||
fn contextPointer(closure: *DetachedClosure) [*]u8 {
|
|
||||||
const base: [*]u8 = @ptrCast(closure);
|
|
||||||
return base + contextOffset(closure.context_alignment);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
fn go(
|
|
||||||
userdata: ?*anyopaque,
|
|
||||||
context: []const u8,
|
|
||||||
context_alignment: std.mem.Alignment,
|
|
||||||
start: *const fn (context: *const anyopaque) void,
|
|
||||||
) void {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
pool.mutex.lock();
|
|
||||||
|
|
||||||
const gpa = pool.allocator;
|
|
||||||
const n = DetachedClosure.contextEnd(context_alignment, context.len);
|
|
||||||
const closure: *DetachedClosure = @alignCast(@ptrCast(gpa.alignedAlloc(u8, @alignOf(DetachedClosure), n) catch {
|
|
||||||
pool.mutex.unlock();
|
|
||||||
start(context.ptr);
|
|
||||||
return;
|
|
||||||
}));
|
|
||||||
closure.* = .{
|
|
||||||
.pool = pool,
|
|
||||||
.func = start,
|
|
||||||
.context_alignment = context_alignment,
|
|
||||||
.context_len = context.len,
|
|
||||||
};
|
|
||||||
@memcpy(closure.contextPointer()[0..context.len], context);
|
|
||||||
pool.run_queue.prepend(&closure.run_node);
|
|
||||||
|
|
||||||
if (pool.threads.items.len < pool.threads.capacity) {
|
|
||||||
pool.threads.addOneAssumeCapacity().* = std.Thread.spawn(.{
|
|
||||||
.stack_size = pool.stack_size,
|
|
||||||
.allocator = gpa,
|
|
||||||
}, worker, .{pool}) catch t: {
|
|
||||||
pool.threads.items.len -= 1;
|
|
||||||
break :t undefined;
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
pool.mutex.unlock();
|
|
||||||
pool.cond.signal();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn await(
|
|
||||||
userdata: ?*anyopaque,
|
|
||||||
any_future: *std.Io.AnyFuture,
|
|
||||||
result: []u8,
|
|
||||||
result_alignment: std.mem.Alignment,
|
|
||||||
) void {
|
|
||||||
_ = result_alignment;
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
const closure: *AsyncClosure = @ptrCast(@alignCast(any_future));
|
|
||||||
closure.waitAndFree(pool.allocator, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn cancel(
|
|
||||||
userdata: ?*anyopaque,
|
|
||||||
any_future: *Io.AnyFuture,
|
|
||||||
result: []u8,
|
|
||||||
result_alignment: std.mem.Alignment,
|
|
||||||
) void {
|
|
||||||
_ = result_alignment;
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
const closure: *AsyncClosure = @ptrCast(@alignCast(any_future));
|
|
||||||
switch (@atomicRmw(
|
|
||||||
std.Thread.Id,
|
|
||||||
&closure.cancel_tid,
|
|
||||||
.Xchg,
|
|
||||||
AsyncClosure.canceling_tid,
|
|
||||||
.acq_rel,
|
|
||||||
)) {
|
|
||||||
0, AsyncClosure.canceling_tid => {},
|
|
||||||
else => |cancel_tid| switch (builtin.os.tag) {
|
|
||||||
.linux => _ = std.os.linux.tgkill(
|
|
||||||
std.os.linux.getpid(),
|
|
||||||
@bitCast(cancel_tid),
|
|
||||||
std.posix.SIG.IO,
|
|
||||||
),
|
|
||||||
else => {},
|
|
||||||
},
|
|
||||||
}
|
|
||||||
closure.waitAndFree(pool.allocator, result);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn cancelRequested(userdata: ?*anyopaque) bool {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
_ = pool;
|
|
||||||
const closure = current_closure orelse return false;
|
|
||||||
return @atomicLoad(std.Thread.Id, &closure.cancel_tid, .acquire) == AsyncClosure.canceling_tid;
|
|
||||||
}
|
|
||||||
|
|
||||||
fn checkCancel(pool: *Pool) error{Canceled}!void {
|
|
||||||
if (cancelRequested(pool)) return error.Canceled;
|
|
||||||
}
|
|
||||||
|
|
||||||
fn mutexLock(userdata: ?*anyopaque, prev_state: Io.Mutex.State, mutex: *Io.Mutex) error{Canceled}!void {
|
|
||||||
_ = userdata;
|
|
||||||
if (prev_state == .contended) {
|
|
||||||
std.Thread.Futex.wait(@ptrCast(&mutex.state), @intFromEnum(Io.Mutex.State.contended));
|
|
||||||
}
|
|
||||||
while (@atomicRmw(
|
|
||||||
Io.Mutex.State,
|
|
||||||
&mutex.state,
|
|
||||||
.Xchg,
|
|
||||||
.contended,
|
|
||||||
.acquire,
|
|
||||||
) != .unlocked) {
|
|
||||||
std.Thread.Futex.wait(@ptrCast(&mutex.state), @intFromEnum(Io.Mutex.State.contended));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
fn mutexUnlock(userdata: ?*anyopaque, prev_state: Io.Mutex.State, mutex: *Io.Mutex) void {
|
|
||||||
_ = userdata;
|
|
||||||
_ = prev_state;
|
|
||||||
if (@atomicRmw(Io.Mutex.State, &mutex.state, .Xchg, .unlocked, .release) == .contended) {
|
|
||||||
std.Thread.Futex.wake(@ptrCast(&mutex.state), 1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn conditionWait(userdata: ?*anyopaque, cond: *Io.Condition, mutex: *Io.Mutex) Io.Cancelable!void {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
comptime assert(@TypeOf(cond.state) == u64);
|
|
||||||
const ints: *[2]std.atomic.Value(u32) = @ptrCast(&cond.state);
|
|
||||||
const cond_state = &ints[0];
|
|
||||||
const cond_epoch = &ints[1];
|
|
||||||
const one_waiter = 1;
|
|
||||||
const waiter_mask = 0xffff;
|
|
||||||
const one_signal = 1 << 16;
|
|
||||||
const signal_mask = 0xffff << 16;
|
|
||||||
// Observe the epoch, then check the state again to see if we should wake up.
|
|
||||||
// The epoch must be observed before we check the state or we could potentially miss a wake() and deadlock:
|
|
||||||
//
|
|
||||||
// - T1: s = LOAD(&state)
|
|
||||||
// - T2: UPDATE(&s, signal)
|
|
||||||
// - T2: UPDATE(&epoch, 1) + FUTEX_WAKE(&epoch)
|
|
||||||
// - T1: e = LOAD(&epoch) (was reordered after the state load)
|
|
||||||
// - T1: s & signals == 0 -> FUTEX_WAIT(&epoch, e) (missed the state update + the epoch change)
|
|
||||||
//
|
|
||||||
// Acquire barrier to ensure the epoch load happens before the state load.
|
|
||||||
var epoch = cond_epoch.load(.acquire);
|
|
||||||
var state = cond_state.fetchAdd(one_waiter, .monotonic);
|
|
||||||
assert(state & waiter_mask != waiter_mask);
|
|
||||||
state += one_waiter;
|
|
||||||
|
|
||||||
mutex.unlock(pool.io());
|
|
||||||
defer mutex.lock(pool.io()) catch @panic("TODO");
|
|
||||||
|
|
||||||
var futex_deadline = std.Thread.Futex.Deadline.init(null);
|
|
||||||
|
|
||||||
while (true) {
|
|
||||||
futex_deadline.wait(cond_epoch, epoch) catch |err| switch (err) {
|
|
||||||
error.Timeout => unreachable,
|
|
||||||
};
|
|
||||||
|
|
||||||
epoch = cond_epoch.load(.acquire);
|
|
||||||
state = cond_state.load(.monotonic);
|
|
||||||
|
|
||||||
// Try to wake up by consuming a signal and decremented the waiter we added previously.
|
|
||||||
// Acquire barrier ensures code before the wake() which added the signal happens before we decrement it and return.
|
|
||||||
while (state & signal_mask != 0) {
|
|
||||||
const new_state = state - one_waiter - one_signal;
|
|
||||||
state = cond_state.cmpxchgWeak(state, new_state, .acquire, .monotonic) orelse return;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn conditionWake(userdata: ?*anyopaque, cond: *Io.Condition, wake: Io.Condition.Wake) void {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
_ = pool;
|
|
||||||
comptime assert(@TypeOf(cond.state) == u64);
|
|
||||||
const ints: *[2]std.atomic.Value(u32) = @ptrCast(&cond.state);
|
|
||||||
const cond_state = &ints[0];
|
|
||||||
const cond_epoch = &ints[1];
|
|
||||||
const one_waiter = 1;
|
|
||||||
const waiter_mask = 0xffff;
|
|
||||||
const one_signal = 1 << 16;
|
|
||||||
const signal_mask = 0xffff << 16;
|
|
||||||
var state = cond_state.load(.monotonic);
|
|
||||||
while (true) {
|
|
||||||
const waiters = (state & waiter_mask) / one_waiter;
|
|
||||||
const signals = (state & signal_mask) / one_signal;
|
|
||||||
|
|
||||||
// Reserves which waiters to wake up by incrementing the signals count.
|
|
||||||
// Therefore, the signals count is always less than or equal to the waiters count.
|
|
||||||
// We don't need to Futex.wake if there's nothing to wake up or if other wake() threads have reserved to wake up the current waiters.
|
|
||||||
const wakeable = waiters - signals;
|
|
||||||
if (wakeable == 0) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
const to_wake = switch (wake) {
|
|
||||||
.one => 1,
|
|
||||||
.all => wakeable,
|
|
||||||
};
|
|
||||||
|
|
||||||
// Reserve the amount of waiters to wake by incrementing the signals count.
|
|
||||||
// Release barrier ensures code before the wake() happens before the signal it posted and consumed by the wait() threads.
|
|
||||||
const new_state = state + (one_signal * to_wake);
|
|
||||||
state = cond_state.cmpxchgWeak(state, new_state, .release, .monotonic) orelse {
|
|
||||||
// Wake up the waiting threads we reserved above by changing the epoch value.
|
|
||||||
// NOTE: a waiting thread could miss a wake up if *exactly* ((1<<32)-1) wake()s happen between it observing the epoch and sleeping on it.
|
|
||||||
// This is very unlikely due to how many precise amount of Futex.wake() calls that would be between the waiting thread's potential preemption.
|
|
||||||
//
|
|
||||||
// Release barrier ensures the signal being added to the state happens before the epoch is changed.
|
|
||||||
// If not, the waiting thread could potentially deadlock from missing both the state and epoch change:
|
|
||||||
//
|
|
||||||
// - T2: UPDATE(&epoch, 1) (reordered before the state change)
|
|
||||||
// - T1: e = LOAD(&epoch)
|
|
||||||
// - T1: s = LOAD(&state)
|
|
||||||
// - T2: UPDATE(&state, signal) + FUTEX_WAKE(&epoch)
|
|
||||||
// - T1: s & signals == 0 -> FUTEX_WAIT(&epoch, e) (missed both epoch change and state change)
|
|
||||||
_ = cond_epoch.fetchAdd(1, .release);
|
|
||||||
std.Thread.Futex.wake(cond_epoch, to_wake);
|
|
||||||
return;
|
|
||||||
};
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn createFile(
|
|
||||||
userdata: ?*anyopaque,
|
|
||||||
dir: Io.Dir,
|
|
||||||
sub_path: []const u8,
|
|
||||||
flags: Io.File.CreateFlags,
|
|
||||||
) Io.File.OpenError!Io.File {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
try pool.checkCancel();
|
|
||||||
const fs_dir: std.fs.Dir = .{ .fd = dir.handle };
|
|
||||||
const fs_file = try fs_dir.createFile(sub_path, flags);
|
|
||||||
return .{ .handle = fs_file.handle };
|
|
||||||
}
|
|
||||||
|
|
||||||
fn openFile(
|
|
||||||
userdata: ?*anyopaque,
|
|
||||||
dir: Io.Dir,
|
|
||||||
sub_path: []const u8,
|
|
||||||
flags: Io.File.OpenFlags,
|
|
||||||
) Io.File.OpenError!Io.File {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
try pool.checkCancel();
|
|
||||||
const fs_dir: std.fs.Dir = .{ .fd = dir.handle };
|
|
||||||
const fs_file = try fs_dir.openFile(sub_path, flags);
|
|
||||||
return .{ .handle = fs_file.handle };
|
|
||||||
}
|
|
||||||
|
|
||||||
fn closeFile(userdata: ?*anyopaque, file: Io.File) void {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
_ = pool;
|
|
||||||
const fs_file: std.fs.File = .{ .handle = file.handle };
|
|
||||||
return fs_file.close();
|
|
||||||
}
|
|
||||||
|
|
||||||
fn pread(userdata: ?*anyopaque, file: Io.File, buffer: []u8, offset: std.posix.off_t) Io.File.PReadError!usize {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
try pool.checkCancel();
|
|
||||||
const fs_file: std.fs.File = .{ .handle = file.handle };
|
|
||||||
return switch (offset) {
|
|
||||||
-1 => fs_file.read(buffer),
|
|
||||||
else => fs_file.pread(buffer, @bitCast(offset)),
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
fn pwrite(userdata: ?*anyopaque, file: Io.File, buffer: []const u8, offset: std.posix.off_t) Io.File.PWriteError!usize {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
try pool.checkCancel();
|
|
||||||
const fs_file: std.fs.File = .{ .handle = file.handle };
|
|
||||||
return switch (offset) {
|
|
||||||
-1 => fs_file.write(buffer),
|
|
||||||
else => fs_file.pwrite(buffer, @bitCast(offset)),
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
fn now(userdata: ?*anyopaque, clockid: std.posix.clockid_t) Io.ClockGetTimeError!Io.Timestamp {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
try pool.checkCancel();
|
|
||||||
const timespec = try std.posix.clock_gettime(clockid);
|
|
||||||
return @enumFromInt(@as(i128, timespec.sec) * std.time.ns_per_s + timespec.nsec);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn sleep(userdata: ?*anyopaque, clockid: std.posix.clockid_t, deadline: Io.Deadline) Io.SleepError!void {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
const deadline_nanoseconds: i96 = switch (deadline) {
|
|
||||||
.duration => |duration| duration.nanoseconds,
|
|
||||||
.timestamp => |timestamp| @intFromEnum(timestamp),
|
|
||||||
};
|
|
||||||
var timespec: std.posix.timespec = .{
|
|
||||||
.sec = @intCast(@divFloor(deadline_nanoseconds, std.time.ns_per_s)),
|
|
||||||
.nsec = @intCast(@mod(deadline_nanoseconds, std.time.ns_per_s)),
|
|
||||||
};
|
|
||||||
while (true) {
|
|
||||||
try pool.checkCancel();
|
|
||||||
switch (std.os.linux.E.init(std.os.linux.clock_nanosleep(clockid, .{ .ABSTIME = switch (deadline) {
|
|
||||||
.duration => false,
|
|
||||||
.timestamp => true,
|
|
||||||
} }, ×pec, ×pec))) {
|
|
||||||
.SUCCESS => return,
|
|
||||||
.FAULT => unreachable,
|
|
||||||
.INTR => {},
|
|
||||||
.INVAL => return error.UnsupportedClock,
|
|
||||||
else => |err| return std.posix.unexpectedErrno(err),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn select(userdata: ?*anyopaque, futures: []const *Io.AnyFuture) usize {
|
|
||||||
const pool: *std.Thread.Pool = @alignCast(@ptrCast(userdata));
|
|
||||||
_ = pool;
|
|
||||||
|
|
||||||
var reset_event: std.Thread.ResetEvent = .{};
|
|
||||||
|
|
||||||
for (futures, 0..) |future, i| {
|
|
||||||
const closure: *AsyncClosure = @ptrCast(@alignCast(future));
|
|
||||||
if (@atomicRmw(?*std.Thread.ResetEvent, &closure.select_condition, .Xchg, &reset_event, .seq_cst) == AsyncClosure.done_reset_event) {
|
|
||||||
for (futures[0..i]) |cleanup_future| {
|
|
||||||
const cleanup_closure: *AsyncClosure = @ptrCast(@alignCast(cleanup_future));
|
|
||||||
if (@atomicRmw(?*std.Thread.ResetEvent, &cleanup_closure.select_condition, .Xchg, null, .seq_cst) == AsyncClosure.done_reset_event) {
|
|
||||||
cleanup_closure.reset_event.wait(); // Ensure no reference to our stack-allocated reset_event.
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
reset_event.wait();
|
|
||||||
|
|
||||||
var result: ?usize = null;
|
|
||||||
for (futures, 0..) |future, i| {
|
|
||||||
const closure: *AsyncClosure = @ptrCast(@alignCast(future));
|
|
||||||
if (@atomicRmw(?*std.Thread.ResetEvent, &closure.select_condition, .Xchg, null, .seq_cst) == AsyncClosure.done_reset_event) {
|
|
||||||
closure.reset_event.wait(); // Ensure no reference to our stack-allocated reset_event.
|
|
||||||
if (result == null) result = i; // In case multiple are ready, return first.
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return result.?;
|
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue