saturating arithmetic builtins: add, sub, mul, shl (#9619)

- adds 1 simple behavior tests for each
  which does integer and vector ops at
  runtime and comptime
- adds bigint_*_sat() methods for each

- use CreateIntrinsic() which accepts a
  variable number of arguments to pass
  the scale parameter

* update langref
- added case to test/compile_errors.zig given floats

- explain upstream bug in llvm.smul.fix.sat and link to #9643 in langref and commented out test cases

* sat-arithmetic: skip mul tests if arch == .wasm32 because ci is erroring with 'LLVM ERROR: Unable to expand fixed point multiplication' when compiling for wasm32
This commit is contained in:
travisstaloch 2021-09-01 11:17:45 -07:00 committed by GitHub
parent 4f0aa7d639
commit 21a5769afe
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
17 changed files with 613 additions and 3 deletions

View file

@ -7031,6 +7031,16 @@ fn readFile(allocator: *Allocator, filename: []const u8) ![]u8 {
If no overflow or underflow occurs, returns {#syntax#}false{#endsyntax#}.
</p>
{#header_close#}
{#header_open|@addWithSaturation#}
<pre>{#syntax#}@addWithSaturation(a: T, b: T) T{#endsyntax#}</pre>
<p>
Returns {#syntax#}a + b{#endsyntax#}. The result will be clamped between the type maximum and minimum.
</p>
<p>
Once <a href="https://github.com/ziglang/zig/issues/1284">Saturating arithmetic</a>.
is completed, the syntax {#syntax#}a +| b{#endsyntax#} will be equivalent to calling {#syntax#}@addWithSaturation(a, b){#endsyntax#}.
</p>
{#header_close#}
{#header_open|@alignCast#}
<pre>{#syntax#}@alignCast(comptime alignment: u29, ptr: anytype) anytype{#endsyntax#}</pre>
<p>
@ -8143,6 +8153,22 @@ test "@wasmMemoryGrow" {
If no overflow or underflow occurs, returns {#syntax#}false{#endsyntax#}.
</p>
{#header_close#}
{#header_open|@mulWithSaturation#}
<pre>{#syntax#}@mulWithSaturation(a: T, b: T) T{#endsyntax#}</pre>
<p>
Returns {#syntax#}a * b{#endsyntax#}. The result will be clamped between the type maximum and minimum.
</p>
<p>
Once <a href="https://github.com/ziglang/zig/issues/1284">Saturating arithmetic</a>.
is completed, the syntax {#syntax#}a *| b{#endsyntax#} will be equivalent to calling {#syntax#}@mulWithSaturation(a, b){#endsyntax#}.
</p>
<p>
NOTE: Currently there is a bug in the llvm.smul.fix.sat intrinsic which affects {#syntax#}@mulWithSaturation{#endsyntax#} of signed integers.
This may result in an incorrect sign bit when there is overflow. This will be fixed in zig's 0.9.0 release.
Check <a href="https://github.com/ziglang/zig/issues/9643">this issue</a> for more information.
</p>
{#header_close#}
{#header_open|@panic#}
<pre>{#syntax#}@panic(message: []const u8) noreturn{#endsyntax#}</pre>
@ -8368,7 +8394,7 @@ test "@setRuntimeSafety" {
The type of {#syntax#}shift_amt{#endsyntax#} is an unsigned integer with {#syntax#}log2(T.bit_count){#endsyntax#} bits.
This is because {#syntax#}shift_amt >= T.bit_count{#endsyntax#} is undefined behavior.
</p>
{#see_also|@shrExact|@shlWithOverflow#}
{#see_also|@shrExact|@shlWithOverflow|@shlWithSaturation#}
{#header_close#}
{#header_open|@shlWithOverflow#}
@ -8382,7 +8408,22 @@ test "@setRuntimeSafety" {
The type of {#syntax#}shift_amt{#endsyntax#} is an unsigned integer with {#syntax#}log2(T.bit_count){#endsyntax#} bits.
This is because {#syntax#}shift_amt >= T.bit_count{#endsyntax#} is undefined behavior.
</p>
{#see_also|@shlExact|@shrExact#}
{#see_also|@shlExact|@shrExact|@shlWithSaturation#}
{#header_close#}
{#header_open|@shlWithSaturation#}
<pre>{#syntax#}@shlWithSaturation(a: T, shift_amt: T) T{#endsyntax#}</pre>
<p>
Returns {#syntax#}a << b{#endsyntax#}. The result will be clamped between type minimum and maximum.
</p>
<p>
Once <a href="https://github.com/ziglang/zig/issues/1284">Saturating arithmetic</a>.
is completed, the syntax {#syntax#}a <<| b{#endsyntax#} will be equivalent to calling {#syntax#}@shlWithSaturation(a, b){#endsyntax#}.
</p>
<p>
Unlike other @shl builtins, shift_amt doesn't need to be a Log2T as saturated overshifting is well defined.
</p>
{#see_also|@shlExact|@shrExact|@shlWithOverflow#}
{#header_close#}
{#header_open|@shrExact#}
@ -8395,7 +8436,7 @@ test "@setRuntimeSafety" {
The type of {#syntax#}shift_amt{#endsyntax#} is an unsigned integer with {#syntax#}log2(T.bit_count){#endsyntax#} bits.
This is because {#syntax#}shift_amt >= T.bit_count{#endsyntax#} is undefined behavior.
</p>
{#see_also|@shlExact|@shlWithOverflow#}
{#see_also|@shlExact|@shlWithOverflow|@shlWithSaturation#}
{#header_close#}
{#header_open|@shuffle#}
@ -8694,6 +8735,17 @@ fn doTheTest() !void {
If no overflow or underflow occurs, returns {#syntax#}false{#endsyntax#}.
</p>
{#header_close#}
{#header_open|@subWithSaturation#}
<pre>{#syntax#}@subWithSaturation(a: T, b: T) T{#endsyntax#}</pre>
<p>
Returns {#syntax#}a - b{#endsyntax#}. The result will be clamped between the type maximum and minimum.
</p>
<p>
Once <a href="https://github.com/ziglang/zig/issues/1284">Saturating arithmetic</a>.
is completed, the syntax {#syntax#}a -| b{#endsyntax#} will be equivalent to calling {#syntax#}@subWithSaturation(a, b){#endsyntax#}.
</p>
{#header_close#}
{#header_open|@tagName#}
<pre>{#syntax#}@tagName(value: anytype) [:0]const u8{#endsyntax#}</pre>

View file

@ -7301,6 +7301,11 @@ fn builtinCall(
return rvalue(gz, rl, result, node);
},
.add_with_saturation => return saturatingArithmetic(gz, scope, rl, node, params, .add_with_saturation),
.sub_with_saturation => return saturatingArithmetic(gz, scope, rl, node, params, .sub_with_saturation),
.mul_with_saturation => return saturatingArithmetic(gz, scope, rl, node, params, .mul_with_saturation),
.shl_with_saturation => return saturatingArithmetic(gz, scope, rl, node, params, .shl_with_saturation),
.atomic_load => {
const int_type = try typeExpr(gz, scope, params[0]);
const ptr_type = try gz.add(.{ .tag = .ptr_type_simple, .data = .{
@ -7693,6 +7698,24 @@ fn overflowArithmetic(
return rvalue(gz, rl, result, node);
}
fn saturatingArithmetic(
gz: *GenZir,
scope: *Scope,
rl: ResultLoc,
node: ast.Node.Index,
params: []const ast.Node.Index,
tag: Zir.Inst.Extended,
) InnerError!Zir.Inst.Ref {
const lhs = try expr(gz, scope, .none, params[0]);
const rhs = try expr(gz, scope, .none, params[1]);
const result = try gz.addExtendedPayload(tag, Zir.Inst.SaturatingArithmetic{
.node = gz.nodeIndexToRelative(node),
.lhs = lhs,
.rhs = rhs,
});
return rvalue(gz, rl, result, node);
}
fn callExpr(
gz: *GenZir,
scope: *Scope,

View file

@ -2,6 +2,7 @@ const std = @import("std");
pub const Tag = enum {
add_with_overflow,
add_with_saturation,
align_cast,
align_of,
as,
@ -65,6 +66,7 @@ pub const Tag = enum {
wasm_memory_grow,
mod,
mul_with_overflow,
mul_with_saturation,
panic,
pop_count,
ptr_cast,
@ -79,10 +81,12 @@ pub const Tag = enum {
set_runtime_safety,
shl_exact,
shl_with_overflow,
shl_with_saturation,
shr_exact,
shuffle,
size_of,
splat,
sub_with_saturation,
reduce,
src,
sqrt,
@ -527,6 +531,34 @@ pub const list = list: {
.param_count = 2,
},
},
.{
"@addWithSaturation",
.{
.tag = .add_with_saturation,
.param_count = 2,
},
},
.{
"@subWithSaturation",
.{
.tag = .sub_with_saturation,
.param_count = 2,
},
},
.{
"@mulWithSaturation",
.{
.tag = .mul_with_saturation,
.param_count = 2,
},
},
.{
"@shlWithSaturation",
.{
.tag = .shl_with_saturation,
.param_count = 2,
},
},
.{
"@memcpy",
.{

View file

@ -570,6 +570,10 @@ fn zirExtended(sema: *Sema, block: *Scope.Block, inst: Zir.Inst.Index) CompileEr
.c_define => return sema.zirCDefine( block, extended),
.wasm_memory_size => return sema.zirWasmMemorySize( block, extended),
.wasm_memory_grow => return sema.zirWasmMemoryGrow( block, extended),
.add_with_saturation=> return sema.zirSatArithmetic( block, extended),
.sub_with_saturation=> return sema.zirSatArithmetic( block, extended),
.mul_with_saturation=> return sema.zirSatArithmetic( block, extended),
.shl_with_saturation=> return sema.zirSatArithmetic( block, extended),
// zig fmt: on
}
}
@ -5691,6 +5695,19 @@ fn zirOverflowArithmetic(
return sema.mod.fail(&block.base, src, "TODO implement Sema.zirOverflowArithmetic", .{});
}
fn zirSatArithmetic(
sema: *Sema,
block: *Scope.Block,
extended: Zir.Inst.Extended.InstData,
) CompileError!Air.Inst.Ref {
const tracy = trace(@src());
defer tracy.end();
const extra = sema.code.extraData(Zir.Inst.SaturatingArithmetic, extended.operand).data;
const src: LazySrcLoc = .{ .node_offset = extra.node };
return sema.mod.fail(&block.base, src, "TODO implement Sema.zirSatArithmetic", .{});
}
fn analyzeArithmetic(
sema: *Sema,
block: *Scope.Block,

View file

@ -1629,6 +1629,22 @@ pub const Inst = struct {
wasm_memory_size,
/// `operand` is payload index to `BinNode`.
wasm_memory_grow,
/// Implements the `@addWithSaturation` builtin.
/// `operand` is payload index to `SaturatingArithmetic`.
/// `small` is unused.
add_with_saturation,
/// Implements the `@subWithSaturation` builtin.
/// `operand` is payload index to `SaturatingArithmetic`.
/// `small` is unused.
sub_with_saturation,
/// Implements the `@mulWithSaturation` builtin.
/// `operand` is payload index to `SaturatingArithmetic`.
/// `small` is unused.
mul_with_saturation,
/// Implements the `@shlWithSaturation` builtin.
/// `operand` is payload index to `SaturatingArithmetic`.
/// `small` is unused.
shl_with_saturation,
pub const InstData = struct {
opcode: Extended,
@ -2751,6 +2767,12 @@ pub const Inst = struct {
ptr: Ref,
};
pub const SaturatingArithmetic = struct {
node: i32,
lhs: Ref,
rhs: Ref,
};
pub const Cmpxchg = struct {
ptr: Ref,
expected_value: Ref,
@ -3231,6 +3253,11 @@ const Writer = struct {
.shl_with_overflow,
=> try self.writeOverflowArithmetic(stream, extended),
.add_with_saturation,
.sub_with_saturation,
.mul_with_saturation,
.shl_with_saturation,
=> try self.writeSaturatingArithmetic(stream, extended),
.struct_decl => try self.writeStructDecl(stream, extended),
.union_decl => try self.writeUnionDecl(stream, extended),
.enum_decl => try self.writeEnumDecl(stream, extended),
@ -3584,6 +3611,18 @@ const Writer = struct {
try self.writeSrc(stream, src);
}
fn writeSaturatingArithmetic(self: *Writer, stream: anytype, extended: Inst.Extended.InstData) !void {
const extra = self.code.extraData(Zir.Inst.SaturatingArithmetic, extended.operand).data;
const src: LazySrcLoc = .{ .node_offset = extra.node };
try self.writeInstRef(stream, extra.lhs);
try stream.writeAll(", ");
try self.writeInstRef(stream, extra.rhs);
try stream.writeAll(", ");
try stream.writeAll(") ");
try self.writeSrc(stream, src);
}
fn writePlNodeCall(self: *Writer, stream: anytype, inst: Inst.Index) !void {
const inst_data = self.code.instructions.items(.data)[inst].pl_node;
const extra = self.code.extraData(Inst.Call, inst_data.payload_index);

View file

@ -1802,6 +1802,10 @@ enum BuiltinFnId {
BuiltinFnIdReduce,
BuiltinFnIdMaximum,
BuiltinFnIdMinimum,
BuiltinFnIdSatAdd,
BuiltinFnIdSatSub,
BuiltinFnIdSatMul,
BuiltinFnIdSatShl,
};
struct BuiltinFnEntry {
@ -2946,6 +2950,10 @@ enum IrBinOp {
IrBinOpArrayMult,
IrBinOpMaximum,
IrBinOpMinimum,
IrBinOpSatAdd,
IrBinOpSatSub,
IrBinOpSatMul,
IrBinOpSatShl,
};
struct Stage1ZirInstBinOp {

View file

@ -4704,6 +4704,66 @@ static Stage1ZirInst *astgen_builtin_fn_call(Stage1AstGen *ag, Scope *scope, Ast
Stage1ZirInst *bin_op = ir_build_bin_op(ag, scope, node, IrBinOpMaximum, arg0_value, arg1_value, true);
return ir_lval_wrap(ag, scope, bin_op, lval, result_loc);
}
case BuiltinFnIdSatAdd:
{
AstNode *arg0_node = node->data.fn_call_expr.params.at(0);
Stage1ZirInst *arg0_value = astgen_node(ag, arg0_node, scope);
if (arg0_value == ag->codegen->invalid_inst_src)
return arg0_value;
AstNode *arg1_node = node->data.fn_call_expr.params.at(1);
Stage1ZirInst *arg1_value = astgen_node(ag, arg1_node, scope);
if (arg1_value == ag->codegen->invalid_inst_src)
return arg1_value;
Stage1ZirInst *bin_op = ir_build_bin_op(ag, scope, node, IrBinOpSatAdd, arg0_value, arg1_value, true);
return ir_lval_wrap(ag, scope, bin_op, lval, result_loc);
}
case BuiltinFnIdSatSub:
{
AstNode *arg0_node = node->data.fn_call_expr.params.at(0);
Stage1ZirInst *arg0_value = astgen_node(ag, arg0_node, scope);
if (arg0_value == ag->codegen->invalid_inst_src)
return arg0_value;
AstNode *arg1_node = node->data.fn_call_expr.params.at(1);
Stage1ZirInst *arg1_value = astgen_node(ag, arg1_node, scope);
if (arg1_value == ag->codegen->invalid_inst_src)
return arg1_value;
Stage1ZirInst *bin_op = ir_build_bin_op(ag, scope, node, IrBinOpSatSub, arg0_value, arg1_value, true);
return ir_lval_wrap(ag, scope, bin_op, lval, result_loc);
}
case BuiltinFnIdSatMul:
{
AstNode *arg0_node = node->data.fn_call_expr.params.at(0);
Stage1ZirInst *arg0_value = astgen_node(ag, arg0_node, scope);
if (arg0_value == ag->codegen->invalid_inst_src)
return arg0_value;
AstNode *arg1_node = node->data.fn_call_expr.params.at(1);
Stage1ZirInst *arg1_value = astgen_node(ag, arg1_node, scope);
if (arg1_value == ag->codegen->invalid_inst_src)
return arg1_value;
Stage1ZirInst *bin_op = ir_build_bin_op(ag, scope, node, IrBinOpSatMul, arg0_value, arg1_value, true);
return ir_lval_wrap(ag, scope, bin_op, lval, result_loc);
}
case BuiltinFnIdSatShl:
{
AstNode *arg0_node = node->data.fn_call_expr.params.at(0);
Stage1ZirInst *arg0_value = astgen_node(ag, arg0_node, scope);
if (arg0_value == ag->codegen->invalid_inst_src)
return arg0_value;
AstNode *arg1_node = node->data.fn_call_expr.params.at(1);
Stage1ZirInst *arg1_value = astgen_node(ag, arg1_node, scope);
if (arg1_value == ag->codegen->invalid_inst_src)
return arg1_value;
Stage1ZirInst *bin_op = ir_build_bin_op(ag, scope, node, IrBinOpSatShl, arg0_value, arg1_value, true);
return ir_lval_wrap(ag, scope, bin_op, lval, result_loc);
}
case BuiltinFnIdMemcpy:
{
AstNode *arg0_node = node->data.fn_call_expr.params.at(0);

View file

@ -468,6 +468,84 @@ void bigint_min(BigInt* dest, const BigInt *op1, const BigInt *op2) {
}
}
/// clamps op within bit_count/signedness boundaries
/// signed bounds are [-2^(bit_count-1)..2^(bit_count-1)-1]
/// unsigned bounds are [0..2^bit_count-1]
void bigint_clamp_by_bitcount(BigInt* dest, uint32_t bit_count, bool is_signed) {
// compute the number of bits required to store the value, and use that
// to decide whether to clamp the result
bool is_negative = dest->is_negative;
// to workaround the fact this bits_needed calculation would yield 65 or more for
// all negative numbers, set is_negative to false. this is a cheap way to find
// bits_needed(abs(dest)).
dest->is_negative = false;
// because we've set is_negative to false, we have to account for the extra bit here
// by adding 1 additional bit_needed when (is_negative && !is_signed).
size_t full_bits = dest->digit_count * 64;
size_t leading_zero_count = bigint_clz(dest, full_bits);
size_t bits_needed = full_bits - leading_zero_count + (is_negative && !is_signed);
bit_count -= is_signed;
if(bits_needed > bit_count) {
BigInt one;
bigint_init_unsigned(&one, 1);
BigInt bit_count_big;
bigint_init_unsigned(&bit_count_big, bit_count);
if(is_signed) {
if(is_negative) {
BigInt bound;
bigint_shl(&bound, &one, &bit_count_big);
bigint_deinit(dest);
*dest = bound;
} else {
BigInt bound;
bigint_shl(&bound, &one, &bit_count_big);
BigInt bound_sub_one;
bigint_sub(&bound_sub_one, &bound, &one);
bigint_deinit(&bound);
bigint_deinit(dest);
*dest = bound_sub_one;
}
} else {
if(is_negative) {
bigint_deinit(dest);
bigint_init_unsigned(dest, 0);
return; // skips setting is_negative which would be invalid
} else {
BigInt bound;
bigint_shl(&bound, &one, &bit_count_big);
BigInt bound_sub_one;
bigint_sub(&bound_sub_one, &bound, &one);
bigint_deinit(&bound);
bigint_deinit(dest);
*dest = bound_sub_one;
}
}
}
dest->is_negative = is_negative;
}
void bigint_add_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed) {
bigint_add(dest, op1, op2);
bigint_clamp_by_bitcount(dest, bit_count, is_signed);
}
void bigint_sub_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed) {
bigint_sub(dest, op1, op2);
bigint_clamp_by_bitcount(dest, bit_count, is_signed);
}
void bigint_mul_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed) {
bigint_mul(dest, op1, op2);
bigint_clamp_by_bitcount(dest, bit_count, is_signed);
}
void bigint_shl_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed) {
bigint_shl(dest, op1, op2);
bigint_clamp_by_bitcount(dest, bit_count, is_signed);
}
void bigint_add(BigInt *dest, const BigInt *op1, const BigInt *op2) {
if (op1->digit_count == 0) {
return bigint_init_bigint(dest, op2);

View file

@ -105,4 +105,8 @@ bool mul_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result);
uint32_t bigint_hash(BigInt const *x);
bool bigint_eql(BigInt const *a, BigInt const *b);
void bigint_add_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed);
void bigint_sub_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed);
void bigint_mul_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed);
void bigint_shl_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed);
#endif

View file

@ -3335,6 +3335,46 @@ static LLVMValueRef ir_render_bin_op(CodeGen *g, Stage1Air *executable,
} else {
zig_unreachable();
}
case IrBinOpSatAdd:
if (scalar_type->id == ZigTypeIdInt) {
if (scalar_type->data.integral.is_signed) {
return ZigLLVMBuildSAddSat(g->builder, op1_value, op2_value, "");
} else {
return ZigLLVMBuildUAddSat(g->builder, op1_value, op2_value, "");
}
} else {
zig_unreachable();
}
case IrBinOpSatSub:
if (scalar_type->id == ZigTypeIdInt) {
if (scalar_type->data.integral.is_signed) {
return ZigLLVMBuildSSubSat(g->builder, op1_value, op2_value, "");
} else {
return ZigLLVMBuildUSubSat(g->builder, op1_value, op2_value, "");
}
} else {
zig_unreachable();
}
case IrBinOpSatMul:
if (scalar_type->id == ZigTypeIdInt) {
if (scalar_type->data.integral.is_signed) {
return ZigLLVMBuildSMulFixSat(g->builder, op1_value, op2_value, "");
} else {
return ZigLLVMBuildUMulFixSat(g->builder, op1_value, op2_value, "");
}
} else {
zig_unreachable();
}
case IrBinOpSatShl:
if (scalar_type->id == ZigTypeIdInt) {
if (scalar_type->data.integral.is_signed) {
return ZigLLVMBuildSShlSat(g->builder, op1_value, op2_value, "");
} else {
return ZigLLVMBuildUShlSat(g->builder, op1_value, op2_value, "");
}
} else {
zig_unreachable();
}
}
zig_unreachable();
}
@ -9096,6 +9136,10 @@ static void define_builtin_fns(CodeGen *g) {
create_builtin_fn(g, BuiltinFnIdReduce, "reduce", 2);
create_builtin_fn(g, BuiltinFnIdMaximum, "maximum", 2);
create_builtin_fn(g, BuiltinFnIdMinimum, "minimum", 2);
create_builtin_fn(g, BuiltinFnIdSatAdd, "addWithSaturation", 2);
create_builtin_fn(g, BuiltinFnIdSatSub, "subWithSaturation", 2);
create_builtin_fn(g, BuiltinFnIdSatMul, "mulWithSaturation", 2);
create_builtin_fn(g, BuiltinFnIdSatShl, "shlWithSaturation", 2);
}
static const char *bool_to_str(bool b) {

View file

@ -9820,6 +9820,34 @@ static ErrorMsg *ir_eval_math_op_scalar(IrAnalyze *ira, Scope *scope, AstNode *s
float_min(out_val, op1_val, op2_val);
}
break;
case IrBinOpSatAdd:
if (is_int) {
bigint_add_sat(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint, type_entry->data.integral.bit_count, type_entry->data.integral.is_signed);
} else {
zig_unreachable();
}
break;
case IrBinOpSatSub:
if (is_int) {
bigint_sub_sat(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint, type_entry->data.integral.bit_count, type_entry->data.integral.is_signed);
} else {
zig_unreachable();
}
break;
case IrBinOpSatMul:
if (is_int) {
bigint_mul_sat(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint, type_entry->data.integral.bit_count, type_entry->data.integral.is_signed);
} else {
zig_unreachable();
}
break;
case IrBinOpSatShl:
if (is_int) {
bigint_shl_sat(&out_val->data.x_bigint, &op1_val->data.x_bigint, &op2_val->data.x_bigint, type_entry->data.integral.bit_count, type_entry->data.integral.is_signed);
} else {
zig_unreachable();
}
break;
}
if (type_entry->id == ZigTypeIdInt) {
@ -10041,6 +10069,10 @@ static bool ok_float_op(IrBinOp op) {
case IrBinOpBitShiftRightExact:
case IrBinOpAddWrap:
case IrBinOpSubWrap:
case IrBinOpSatAdd:
case IrBinOpSatSub:
case IrBinOpSatMul:
case IrBinOpSatShl:
case IrBinOpMultWrap:
case IrBinOpArrayCat:
case IrBinOpArrayMult:
@ -11014,6 +11046,10 @@ static Stage1AirInst *ir_analyze_instruction_bin_op(IrAnalyze *ira, Stage1ZirIns
case IrBinOpRemMod:
case IrBinOpMaximum:
case IrBinOpMinimum:
case IrBinOpSatAdd:
case IrBinOpSatSub:
case IrBinOpSatMul:
case IrBinOpSatShl:
return ir_analyze_bin_op_math(ira, bin_op_instruction);
case IrBinOpArrayCat:
return ir_analyze_array_cat(ira, bin_op_instruction);

View file

@ -737,6 +737,14 @@ static const char *ir_bin_op_id_str(IrBinOp op_id) {
return "@maximum";
case IrBinOpMinimum:
return "@minimum";
case IrBinOpSatAdd:
return "@addWithSaturation";
case IrBinOpSatSub:
return "@subWithSaturation";
case IrBinOpSatMul:
return "@mulWithSaturation";
case IrBinOpSatShl:
return "@shlWithSaturation";
}
zig_unreachable();
}

View file

@ -488,6 +488,58 @@ LLVMValueRef ZigLLVMBuildSMin(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef R
return wrap(call_inst);
}
LLVMValueRef ZigLLVMBuildSAddSat(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, const char *name) {
CallInst *call_inst = unwrap(B)->CreateBinaryIntrinsic(Intrinsic::sadd_sat, unwrap(LHS), unwrap(RHS), nullptr, name);
return wrap(call_inst);
}
LLVMValueRef ZigLLVMBuildUAddSat(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, const char *name) {
CallInst *call_inst = unwrap(B)->CreateBinaryIntrinsic(Intrinsic::uadd_sat, unwrap(LHS), unwrap(RHS), nullptr, name);
return wrap(call_inst);
}
LLVMValueRef ZigLLVMBuildSSubSat(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, const char *name) {
CallInst *call_inst = unwrap(B)->CreateBinaryIntrinsic(Intrinsic::ssub_sat, unwrap(LHS), unwrap(RHS), nullptr, name);
return wrap(call_inst);
}
LLVMValueRef ZigLLVMBuildUSubSat(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, const char *name) {
CallInst *call_inst = unwrap(B)->CreateBinaryIntrinsic(Intrinsic::usub_sat, unwrap(LHS), unwrap(RHS), nullptr, name);
return wrap(call_inst);
}
LLVMValueRef ZigLLVMBuildSMulFixSat(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, const char *name) {
llvm::Type* types[1] = {
unwrap(LHS)->getType(),
};
// pass scale = 0 as third argument
llvm::Value* values[3] = {unwrap(LHS), unwrap(RHS), unwrap(B)->getInt32(0)};
CallInst *call_inst = unwrap(B)->CreateIntrinsic(Intrinsic::smul_fix_sat, types, values, nullptr, name);
return wrap(call_inst);
}
LLVMValueRef ZigLLVMBuildUMulFixSat(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, const char *name) {
llvm::Type* types[1] = {
unwrap(LHS)->getType(),
};
// pass scale = 0 as third argument
llvm::Value* values[3] = {unwrap(LHS), unwrap(RHS), unwrap(B)->getInt32(0)};
CallInst *call_inst = unwrap(B)->CreateIntrinsic(Intrinsic::umul_fix_sat, types, values, nullptr, name);
return wrap(call_inst);
}
LLVMValueRef ZigLLVMBuildSShlSat(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, const char *name) {
CallInst *call_inst = unwrap(B)->CreateBinaryIntrinsic(Intrinsic::sshl_sat, unwrap(LHS), unwrap(RHS), nullptr, name);
return wrap(call_inst);
}
LLVMValueRef ZigLLVMBuildUShlSat(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, const char *name) {
CallInst *call_inst = unwrap(B)->CreateBinaryIntrinsic(Intrinsic::ushl_sat, unwrap(LHS), unwrap(RHS), nullptr, name);
return wrap(call_inst);
}
void ZigLLVMFnSetSubprogram(LLVMValueRef fn, ZigLLVMDISubprogram *subprogram) {
assert( isa<Function>(unwrap(fn)) );
Function *unwrapped_function = reinterpret_cast<Function*>(unwrap(fn));

View file

@ -136,6 +136,15 @@ ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildUMax(LLVMBuilderRef builder, LLVMValueRef
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildUMin(LLVMBuilderRef builder, LLVMValueRef LHS, LLVMValueRef RHS, const char* name);
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildSMax(LLVMBuilderRef builder, LLVMValueRef LHS, LLVMValueRef RHS, const char* name);
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildSMin(LLVMBuilderRef builder, LLVMValueRef LHS, LLVMValueRef RHS, const char* name);
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildUAddSat(LLVMBuilderRef builder, LLVMValueRef LHS, LLVMValueRef RHS, const char* name);
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildSAddSat(LLVMBuilderRef builder, LLVMValueRef LHS, LLVMValueRef RHS, const char* name);
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildUSubSat(LLVMBuilderRef builder, LLVMValueRef LHS, LLVMValueRef RHS, const char* name);
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildSSubSat(LLVMBuilderRef builder, LLVMValueRef LHS, LLVMValueRef RHS, const char* name);
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildSMulFixSat(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, const char *name);
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildUMulFixSat(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS, const char *name);
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildUShlSat(LLVMBuilderRef builder, LLVMValueRef LHS, LLVMValueRef RHS, const char* name);
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildSShlSat(LLVMBuilderRef builder, LLVMValueRef LHS, LLVMValueRef RHS, const char* name);
ZIG_EXTERN_C LLVMValueRef ZigLLVMBuildCmpXchg(LLVMBuilderRef builder, LLVMValueRef ptr, LLVMValueRef cmp,
LLVMValueRef new_val, LLVMAtomicOrdering success_ordering,

View file

@ -125,6 +125,7 @@ test {
_ = @import("behavior/pub_enum.zig");
_ = @import("behavior/ref_var_in_if_after_if_2nd_switch_prong.zig");
_ = @import("behavior/reflection.zig");
_ = @import("behavior/saturating_arithmetic.zig");
_ = @import("behavior/shuffle.zig");
_ = @import("behavior/select.zig");
_ = @import("behavior/sizeof_and_typeof.zig");

View file

@ -0,0 +1,139 @@
const std = @import("std");
const builtin = @import("builtin");
const mem = std.mem;
const expectEqual = std.testing.expectEqual;
const Vector = std.meta.Vector;
const minInt = std.math.minInt;
const maxInt = std.math.maxInt;
const Op = enum { add, sub, mul, shl };
fn testSaturatingOp(comptime op: Op, comptime T: type, test_data: [3]T) !void {
const a = test_data[0];
const b = test_data[1];
const expected = test_data[2];
const actual = switch (op) {
.add => @addWithSaturation(a, b),
.sub => @subWithSaturation(a, b),
.mul => @mulWithSaturation(a, b),
.shl => @shlWithSaturation(a, b),
};
try expectEqual(expected, actual);
}
test "@addWithSaturation" {
const S = struct {
fn doTheTest() !void {
// .{a, b, expected a+b}
try testSaturatingOp(.add, i8, .{ -3, 10, 7 });
try testSaturatingOp(.add, i8, .{ -128, -128, -128 });
try testSaturatingOp(.add, i2, .{ 1, 1, 1 });
try testSaturatingOp(.add, i64, .{ maxInt(i64), 1, maxInt(i64) });
try testSaturatingOp(.add, i128, .{ maxInt(i128), -maxInt(i128), 0 });
try testSaturatingOp(.add, i128, .{ minInt(i128), maxInt(i128), -1 });
try testSaturatingOp(.add, i8, .{ 127, 127, 127 });
try testSaturatingOp(.add, u8, .{ 3, 10, 13 });
try testSaturatingOp(.add, u8, .{ 255, 255, 255 });
try testSaturatingOp(.add, u2, .{ 3, 2, 3 });
try testSaturatingOp(.add, u3, .{ 7, 1, 7 });
try testSaturatingOp(.add, u128, .{ maxInt(u128), 1, maxInt(u128) });
const u8x3 = std.meta.Vector(3, u8);
try expectEqual(u8x3{ 255, 255, 255 }, @addWithSaturation(
u8x3{ 255, 254, 1 },
u8x3{ 1, 2, 255 },
));
const i8x3 = std.meta.Vector(3, i8);
try expectEqual(i8x3{ 127, 127, 127 }, @addWithSaturation(
i8x3{ 127, 126, 1 },
i8x3{ 1, 2, 127 },
));
}
};
try S.doTheTest();
comptime try S.doTheTest();
}
test "@subWithSaturation" {
const S = struct {
fn doTheTest() !void {
// .{a, b, expected a-b}
try testSaturatingOp(.sub, i8, .{ -3, 10, -13 });
try testSaturatingOp(.sub, i8, .{ -128, -128, 0 });
try testSaturatingOp(.sub, i8, .{ -1, 127, -128 });
try testSaturatingOp(.sub, i64, .{ minInt(i64), 1, minInt(i64) });
try testSaturatingOp(.sub, i128, .{ maxInt(i128), -1, maxInt(i128) });
try testSaturatingOp(.sub, i128, .{ minInt(i128), -maxInt(i128), -1 });
try testSaturatingOp(.sub, u8, .{ 10, 3, 7 });
try testSaturatingOp(.sub, u8, .{ 0, 255, 0 });
try testSaturatingOp(.sub, u5, .{ 0, 31, 0 });
try testSaturatingOp(.sub, u128, .{ 0, maxInt(u128), 0 });
const u8x3 = std.meta.Vector(3, u8);
try expectEqual(u8x3{ 0, 0, 0 }, @subWithSaturation(
u8x3{ 0, 0, 0 },
u8x3{ 255, 255, 255 },
));
}
};
try S.doTheTest();
comptime try S.doTheTest();
}
test "@mulWithSaturation" {
// TODO: once #9660 has been solved, remove this line
if (std.builtin.target.cpu.arch == .wasm32) return error.SkipZigTest;
const S = struct {
fn doTheTest() !void {
// .{a, b, expected a*b}
try testSaturatingOp(.mul, i8, .{ -3, 10, -30 });
try testSaturatingOp(.mul, i4, .{ 2, 4, 7 });
try testSaturatingOp(.mul, i8, .{ 2, 127, 127 });
// TODO: uncomment these after #9643 has been solved - this should happen at 0.9.0/llvm-13 release
// try testSaturatingOp(.mul, i8, .{ -128, -128, 127 });
// try testSaturatingOp(.mul, i8, .{ maxInt(i8), maxInt(i8), maxInt(i8) });
try testSaturatingOp(.mul, i16, .{ maxInt(i16), -1, minInt(i16) + 1 });
try testSaturatingOp(.mul, i128, .{ maxInt(i128), -1, minInt(i128) + 1 });
try testSaturatingOp(.mul, i128, .{ minInt(i128), -1, maxInt(i128) });
try testSaturatingOp(.mul, u8, .{ 10, 3, 30 });
try testSaturatingOp(.mul, u8, .{ 2, 255, 255 });
try testSaturatingOp(.mul, u128, .{ maxInt(u128), maxInt(u128), maxInt(u128) });
const u8x3 = std.meta.Vector(3, u8);
try expectEqual(u8x3{ 255, 255, 255 }, @mulWithSaturation(
u8x3{ 2, 2, 2 },
u8x3{ 255, 255, 255 },
));
}
};
try S.doTheTest();
comptime try S.doTheTest();
}
test "@shlWithSaturation" {
const S = struct {
fn doTheTest() !void {
// .{a, b, expected a<<b}
try testSaturatingOp(.shl, i8, .{ 1, 2, 4 });
try testSaturatingOp(.shl, i8, .{ 127, 1, 127 });
try testSaturatingOp(.shl, i8, .{ -128, 1, -128 });
// TODO: remove this check once #9668 is completed
if (std.builtin.target.cpu.arch != .wasm32) {
// skip testing ints > 64 bits on wasm due to miscompilation / wasmtime ci error
try testSaturatingOp(.shl, i128, .{ maxInt(i128), 64, maxInt(i128) });
try testSaturatingOp(.shl, u128, .{ maxInt(u128), 64, maxInt(u128) });
}
try testSaturatingOp(.shl, u8, .{ 1, 2, 4 });
try testSaturatingOp(.shl, u8, .{ 255, 1, 255 });
const u8x3 = std.meta.Vector(3, u8);
try expectEqual(u8x3{ 255, 255, 255 }, @shlWithSaturation(
u8x3{ 255, 255, 255 },
u8x3{ 1, 1, 1 },
));
}
};
try S.doTheTest();
comptime try S.doTheTest();
}

View file

@ -8838,4 +8838,12 @@ pub fn addCases(ctx: *TestContext) !void {
"tmp.zig:2:9: note: declared mutable here",
"tmp.zig:3:12: note: crosses namespace boundary here",
});
ctx.objErrStage1("Issue #9619: saturating arithmetic builtins should fail to compile when given floats",
\\pub fn main() !void {
\\ _ = @addWithSaturation(@as(f32, 1.0), @as(f32, 1.0));
\\}
, &[_][]const u8{
"error: invalid operands to binary expression: 'f32' and 'f32'",
});
}