std.Thread.ResetEvent: make it more reusable

This commit is contained in:
Andrew Kelley 2025-09-26 21:58:06 -07:00
parent f9d976a4e1
commit 5469db66e4
5 changed files with 264 additions and 290 deletions

View file

@ -413,7 +413,6 @@ set(ZIG_STAGE2_SOURCES
lib/std/Thread/Futex.zig
lib/std/Thread/Mutex.zig
lib/std/Thread/Pool.zig
lib/std/Thread/ResetEvent.zig
lib/std/Thread/WaitGroup.zig
lib/std/array_hash_map.zig
lib/std/array_list.zig

View file

@ -392,7 +392,7 @@ var global_progress: Progress = .{
.terminal = undefined,
.terminal_mode = .off,
.update_thread = null,
.redraw_event = .{},
.redraw_event = .unset,
.refresh_rate_ns = undefined,
.initial_delay_ns = undefined,
.rows = 0,

View file

@ -10,9 +10,9 @@ const target = builtin.target;
const native_os = builtin.os.tag;
const posix = std.posix;
const windows = std.os.windows;
const testing = std.testing;
pub const Futex = @import("Thread/Futex.zig");
pub const ResetEvent = @import("Thread/ResetEvent.zig");
pub const Mutex = @import("Thread/Mutex.zig");
pub const Semaphore = @import("Thread/Semaphore.zig");
pub const Condition = @import("Thread/Condition.zig");
@ -22,6 +22,126 @@ pub const WaitGroup = @import("Thread/WaitGroup.zig");
pub const use_pthreads = native_os != .windows and native_os != .wasi and builtin.link_libc;
/// A thread-safe logical boolean value which can be `set` and `unset`.
///
/// It can also block threads until the value is set with cancelation via timed
/// waits. Statically initializable; four bytes on all targets.
pub const ResetEvent = enum(u32) {
unset = 0,
waiting = 1,
is_set = 2,
/// Returns whether the logical boolean is `set`.
///
/// Once `reset` is called, this returns false until the next `set`.
///
/// The memory accesses before the `set` can be said to happen before
/// `isSet` returns true.
pub fn isSet(re: *const ResetEvent) bool {
if (builtin.single_threaded) return switch (re.*) {
.unset => false,
.waiting => unreachable,
.is_set => true,
};
// Acquire barrier ensures memory accesses before `set` happen before
// returning true.
return @atomicLoad(ResetEvent, re, .acquire) == .is_set;
}
/// Blocks the calling thread until `set` is called.
///
/// This is effectively a more efficient version of `while (!isSet()) {}`.
///
/// The memory accesses before the `set` can be said to happen before `wait` returns.
pub fn wait(re: *ResetEvent) void {
if (builtin.single_threaded) switch (re.*) {
.unset => unreachable, // Deadlock, no other threads to wake us up.
.waiting => unreachable, // Invalid state.
.is_set => return,
};
if (!re.isSet()) return timedWaitInner(re, null) catch |err| switch (err) {
error.Timeout => unreachable, // No timeout specified.
};
}
/// Blocks the calling thread until `set` is called, or until the
/// corresponding timeout expires, returning `error.Timeout`.
///
/// This is effectively a more efficient version of `while (!isSet()) {}`.
///
/// The memory accesses before the set() can be said to happen before
/// timedWait() returns without error.
pub fn timedWait(re: *ResetEvent, timeout_ns: u64) void {
if (builtin.single_threaded) switch (re.*) {
.unset => {
sleep(timeout_ns);
return error.Timeout;
},
.waiting => unreachable, // Invalid state.
.is_set => return,
};
if (!re.isSet()) return timedWaitInner(re, timeout_ns);
}
fn timedWaitInner(re: *ResetEvent, timeout: ?u64) error{Timeout}!void {
@branchHint(.cold);
// Try to set the state from `unset` to `waiting` to indicate to the
// `set` thread that others are blocked on the ResetEvent. Avoid using
// any strict barriers until we know the ResetEvent is set.
var state = @atomicLoad(ResetEvent, re, .acquire);
if (state == .unset) {
state = @cmpxchgStrong(ResetEvent, re, state, .waiting, .acquire, .acquire) orelse .waiting;
}
// Wait until the ResetEvent is set since the state is waiting.
if (state == .waiting) {
var futex_deadline = Futex.Deadline.init(timeout);
while (true) {
const wait_result = futex_deadline.wait(@ptrCast(re), @intFromEnum(ResetEvent.waiting));
// Check if the ResetEvent was set before possibly reporting error.Timeout below.
state = @atomicLoad(ResetEvent, re, .acquire);
if (state != .waiting) break;
try wait_result;
}
}
assert(state == .is_set);
}
/// Marks the logical boolean as `set` and unblocks any threads in `wait`
/// or `timedWait` to observe the new state.
///
/// The logical boolean stays `set` until `reset` is called, making future
/// `set` calls do nothing semantically.
///
/// The memory accesses before `set` can be said to happen before `isSet`
/// returns true or `wait`/`timedWait` return successfully.
pub fn set(re: *ResetEvent) void {
if (builtin.single_threaded) {
re.* = .is_set;
return;
}
if (@atomicRmw(ResetEvent, re, .Xchg, .is_set, .release) == .waiting) {
Futex.wake(@ptrCast(re), std.math.maxInt(u32));
}
}
/// Unmarks the ResetEvent as if `set` was never called.
///
/// Assumes no threads are blocked in `wait` or `timedWait`. Concurrent
/// calls to `set`, `isSet` and `reset` are allowed.
pub fn reset(re: *ResetEvent) void {
if (builtin.single_threaded) {
re.* = .unset;
return;
}
@atomicStore(ResetEvent, re, .unset, .monotonic);
}
};
/// Spurious wakeups are possible and no precision of timing is guaranteed.
pub fn sleep(nanoseconds: u64) void {
if (builtin.os.tag == .windows) {
@ -1780,3 +1900,125 @@ fn testTls() !void {
x += 1;
if (x != 1235) return error.TlsBadEndValue;
}
test "ResetEvent smoke test" {
// make sure the event is unset
var event = ResetEvent{};
try testing.expectEqual(false, event.isSet());
// make sure the event gets set
event.set();
try testing.expectEqual(true, event.isSet());
// make sure the event gets unset again
event.reset();
try testing.expectEqual(false, event.isSet());
// waits should timeout as there's no other thread to set the event
try testing.expectError(error.Timeout, event.timedWait(0));
try testing.expectError(error.Timeout, event.timedWait(std.time.ns_per_ms));
// set the event again and make sure waits complete
event.set();
event.wait();
try event.timedWait(std.time.ns_per_ms);
try testing.expectEqual(true, event.isSet());
}
test "ResetEvent signaling" {
// This test requires spawning threads
if (builtin.single_threaded) {
return error.SkipZigTest;
}
const Context = struct {
in: ResetEvent = .{},
out: ResetEvent = .{},
value: usize = 0,
fn input(self: *@This()) !void {
// wait for the value to become 1
self.in.wait();
self.in.reset();
try testing.expectEqual(self.value, 1);
// bump the value and wake up output()
self.value = 2;
self.out.set();
// wait for output to receive 2, bump the value and wake us up with 3
self.in.wait();
self.in.reset();
try testing.expectEqual(self.value, 3);
// bump the value and wake up output() for it to see 4
self.value = 4;
self.out.set();
}
fn output(self: *@This()) !void {
// start with 0 and bump the value for input to see 1
try testing.expectEqual(self.value, 0);
self.value = 1;
self.in.set();
// wait for input to receive 1, bump the value to 2 and wake us up
self.out.wait();
self.out.reset();
try testing.expectEqual(self.value, 2);
// bump the value to 3 for input to see (rhymes)
self.value = 3;
self.in.set();
// wait for input to bump the value to 4 and receive no more (rhymes)
self.out.wait();
self.out.reset();
try testing.expectEqual(self.value, 4);
}
};
var ctx = Context{};
const thread = try std.Thread.spawn(.{}, Context.output, .{&ctx});
defer thread.join();
try ctx.input();
}
test "ResetEvent broadcast" {
// This test requires spawning threads
if (builtin.single_threaded) {
return error.SkipZigTest;
}
const num_threads = 10;
const Barrier = struct {
event: ResetEvent = .{},
counter: std.atomic.Value(usize) = std.atomic.Value(usize).init(num_threads),
fn wait(self: *@This()) void {
if (self.counter.fetchSub(1, .acq_rel) == 1) {
self.event.set();
}
}
};
const Context = struct {
start_barrier: Barrier = .{},
finish_barrier: Barrier = .{},
fn run(self: *@This()) void {
self.start_barrier.wait();
self.finish_barrier.wait();
}
};
var ctx = Context{};
var threads: [num_threads - 1]std.Thread = undefined;
for (&threads) |*t| t.* = try std.Thread.spawn(.{}, Context.run, .{&ctx});
defer for (threads) |t| t.join();
ctx.run();
}

View file

@ -1,278 +0,0 @@
//! ResetEvent is a thread-safe bool which can be set to true/false ("set"/"unset").
//! It can also block threads until the "bool" is set with cancellation via timed waits.
//! ResetEvent can be statically initialized and is at most `@sizeOf(u64)` large.
const std = @import("../std.zig");
const builtin = @import("builtin");
const ResetEvent = @This();
const os = std.os;
const assert = std.debug.assert;
const testing = std.testing;
const Futex = std.Thread.Futex;
impl: Impl = .{},
/// Returns if the ResetEvent was set().
/// Once reset() is called, this returns false until the next set().
/// The memory accesses before the set() can be said to happen before isSet() returns true.
pub fn isSet(self: *const ResetEvent) bool {
return self.impl.isSet();
}
/// Block's the callers thread until the ResetEvent is set().
/// This is effectively a more efficient version of `while (!isSet()) {}`.
/// The memory accesses before the set() can be said to happen before wait() returns.
pub fn wait(self: *ResetEvent) void {
self.impl.wait(null) catch |err| switch (err) {
error.Timeout => unreachable, // no timeout provided so we shouldn't have timed-out
};
}
/// Block's the callers thread until the ResetEvent is set(), or until the corresponding timeout expires.
/// If the timeout expires before the ResetEvent is set, `error.Timeout` is returned.
/// This is effectively a more efficient version of `while (!isSet()) {}`.
/// The memory accesses before the set() can be said to happen before timedWait() returns without error.
pub fn timedWait(self: *ResetEvent, timeout_ns: u64) error{Timeout}!void {
return self.impl.wait(timeout_ns);
}
/// Marks the ResetEvent as "set" and unblocks any threads in `wait()` or `timedWait()` to observe the new state.
/// The ResetEvent says "set" until reset() is called, making future set() calls do nothing semantically.
/// The memory accesses before set() can be said to happen before isSet() returns true or wait()/timedWait() return successfully.
pub fn set(self: *ResetEvent) void {
self.impl.set();
}
/// Unmarks the ResetEvent from its "set" state if set() was called previously.
/// It is undefined behavior is reset() is called while threads are blocked in wait() or timedWait().
/// Concurrent calls to set(), isSet() and reset() are allowed.
pub fn reset(self: *ResetEvent) void {
self.impl.reset();
}
const Impl = if (builtin.single_threaded)
SingleThreadedImpl
else
FutexImpl;
const SingleThreadedImpl = struct {
is_set: bool = false,
fn isSet(self: *const Impl) bool {
return self.is_set;
}
fn wait(self: *Impl, timeout: ?u64) error{Timeout}!void {
if (self.isSet()) {
return;
}
// There are no other threads to wake us up.
// So if we wait without a timeout we would never wake up.
const timeout_ns = timeout orelse {
unreachable; // deadlock detected
};
std.Thread.sleep(timeout_ns);
return error.Timeout;
}
fn set(self: *Impl) void {
self.is_set = true;
}
fn reset(self: *Impl) void {
self.is_set = false;
}
};
const FutexImpl = struct {
state: std.atomic.Value(u32) = std.atomic.Value(u32).init(unset),
const unset = 0;
const waiting = 1;
const is_set = 2;
fn isSet(self: *const Impl) bool {
// Acquire barrier ensures memory accesses before set() happen before we return true.
return self.state.load(.acquire) == is_set;
}
fn wait(self: *Impl, timeout: ?u64) error{Timeout}!void {
// Outline the slow path to allow isSet() to be inlined
if (!self.isSet()) {
return self.waitUntilSet(timeout);
}
}
fn waitUntilSet(self: *Impl, timeout: ?u64) error{Timeout}!void {
@branchHint(.cold);
// Try to set the state from `unset` to `waiting` to indicate
// to the set() thread that others are blocked on the ResetEvent.
// We avoid using any strict barriers until the end when we know the ResetEvent is set.
var state = self.state.load(.acquire);
if (state == unset) {
state = self.state.cmpxchgStrong(state, waiting, .acquire, .acquire) orelse waiting;
}
// Wait until the ResetEvent is set since the state is waiting.
if (state == waiting) {
var futex_deadline = Futex.Deadline.init(timeout);
while (true) {
const wait_result = futex_deadline.wait(&self.state, waiting);
// Check if the ResetEvent was set before possibly reporting error.Timeout below.
state = self.state.load(.acquire);
if (state != waiting) {
break;
}
try wait_result;
}
}
assert(state == is_set);
}
fn set(self: *Impl) void {
// Quick check if the ResetEvent is already set before doing the atomic swap below.
// set() could be getting called quite often and multiple threads calling swap() increases contention unnecessarily.
if (self.state.load(.monotonic) == is_set) {
return;
}
// Mark the ResetEvent as set and unblock all waiters waiting on it if any.
// Release barrier ensures memory accesses before set() happen before the ResetEvent is observed to be "set".
if (self.state.swap(is_set, .release) == waiting) {
Futex.wake(&self.state, std.math.maxInt(u32));
}
}
fn reset(self: *Impl) void {
self.state.store(unset, .monotonic);
}
};
test "smoke test" {
// make sure the event is unset
var event = ResetEvent{};
try testing.expectEqual(false, event.isSet());
// make sure the event gets set
event.set();
try testing.expectEqual(true, event.isSet());
// make sure the event gets unset again
event.reset();
try testing.expectEqual(false, event.isSet());
// waits should timeout as there's no other thread to set the event
try testing.expectError(error.Timeout, event.timedWait(0));
try testing.expectError(error.Timeout, event.timedWait(std.time.ns_per_ms));
// set the event again and make sure waits complete
event.set();
event.wait();
try event.timedWait(std.time.ns_per_ms);
try testing.expectEqual(true, event.isSet());
}
test "signaling" {
// This test requires spawning threads
if (builtin.single_threaded) {
return error.SkipZigTest;
}
const Context = struct {
in: ResetEvent = .{},
out: ResetEvent = .{},
value: usize = 0,
fn input(self: *@This()) !void {
// wait for the value to become 1
self.in.wait();
self.in.reset();
try testing.expectEqual(self.value, 1);
// bump the value and wake up output()
self.value = 2;
self.out.set();
// wait for output to receive 2, bump the value and wake us up with 3
self.in.wait();
self.in.reset();
try testing.expectEqual(self.value, 3);
// bump the value and wake up output() for it to see 4
self.value = 4;
self.out.set();
}
fn output(self: *@This()) !void {
// start with 0 and bump the value for input to see 1
try testing.expectEqual(self.value, 0);
self.value = 1;
self.in.set();
// wait for input to receive 1, bump the value to 2 and wake us up
self.out.wait();
self.out.reset();
try testing.expectEqual(self.value, 2);
// bump the value to 3 for input to see (rhymes)
self.value = 3;
self.in.set();
// wait for input to bump the value to 4 and receive no more (rhymes)
self.out.wait();
self.out.reset();
try testing.expectEqual(self.value, 4);
}
};
var ctx = Context{};
const thread = try std.Thread.spawn(.{}, Context.output, .{&ctx});
defer thread.join();
try ctx.input();
}
test "broadcast" {
// This test requires spawning threads
if (builtin.single_threaded) {
return error.SkipZigTest;
}
const num_threads = 10;
const Barrier = struct {
event: ResetEvent = .{},
counter: std.atomic.Value(usize) = std.atomic.Value(usize).init(num_threads),
fn wait(self: *@This()) void {
if (self.counter.fetchSub(1, .acq_rel) == 1) {
self.event.set();
}
}
};
const Context = struct {
start_barrier: Barrier = .{},
finish_barrier: Barrier = .{},
fn run(self: *@This()) void {
self.start_barrier.wait();
self.finish_barrier.wait();
}
};
var ctx = Context{};
var threads: [num_threads - 1]std.Thread = undefined;
for (&threads) |*t| t.* = try std.Thread.spawn(.{}, Context.run, .{&ctx});
defer for (threads) |t| t.join();
ctx.run();
}

View file

@ -7,11 +7,15 @@ const is_waiting: usize = 1 << 0;
const one_pending: usize = 1 << 1;
state: std.atomic.Value(usize) = std.atomic.Value(usize).init(0),
event: std.Thread.ResetEvent = .{},
event: std.Thread.ResetEvent = .unset,
pub fn start(self: *WaitGroup) void {
const state = self.state.fetchAdd(one_pending, .monotonic);
assert((state / one_pending) < (std.math.maxInt(usize) / one_pending));
return startStateless(&self.state);
}
pub fn startStateless(state: *std.atomic.Value(usize)) void {
const prev_state = state.fetchAdd(one_pending, .monotonic);
assert((prev_state / one_pending) < (std.math.maxInt(usize) / one_pending));
}
pub fn startMany(self: *WaitGroup, n: usize) void {
@ -28,13 +32,20 @@ pub fn finish(self: *WaitGroup) void {
}
}
pub fn wait(self: *WaitGroup) void {
const state = self.state.fetchAdd(is_waiting, .acquire);
assert(state & is_waiting == 0);
pub fn finishStateless(state: *std.atomic.Value(usize), event: *std.Thread.ResetEvent) void {
const prev_state = state.fetchSub(one_pending, .acq_rel);
assert((prev_state / one_pending) > 0);
if (prev_state == (one_pending | is_waiting)) event.set();
}
if ((state / one_pending) > 0) {
self.event.wait();
}
pub fn wait(wg: *WaitGroup) void {
return waitStateless(&wg.state, &wg.event);
}
pub fn waitStateless(state: *std.atomic.Value(usize), event: *std.Thread.ResetEvent) void {
const prev_state = state.fetchAdd(is_waiting, .acquire);
assert(prev_state & is_waiting == 0);
if ((prev_state / one_pending) > 0) event.wait();
}
pub fn reset(self: *WaitGroup) void {