add scrypt kdf (#9577)

add phc encoding parser
add password hash functions to benchmark
change bcrypt to be consistent with scrypt

Co-authored-by: lucky <>
This commit is contained in:
lucky 2021-08-24 14:58:09 +03:00 committed by GitHub
parent a98fa56ae9
commit 8c41a8e761
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 1392 additions and 104 deletions

View file

@ -110,7 +110,16 @@ pub const onetimeauth = struct {
///
/// Password hashing functions must be used whenever sensitive data has to be directly derived from a password.
pub const pwhash = struct {
pub const Encoding = enum {
phc,
crypt,
};
pub const KdfError = errors.Error || std.mem.Allocator.Error;
pub const HasherError = KdfError || @import("crypto/phc_encoding.zig").Error;
pub const Error = HasherError || error{AllocatorRequired};
pub const bcrypt = @import("crypto/bcrypt.zig");
pub const scrypt = @import("crypto/scrypt.zig");
pub const pbkdf2 = @import("crypto/pbkdf2.zig").pbkdf2;
};

View file

@ -6,21 +6,28 @@
const std = @import("std");
const crypto = std.crypto;
const debug = std.debug;
const fmt = std.fmt;
const math = std.math;
const mem = std.mem;
const debug = std.debug;
const pwhash = crypto.pwhash;
const testing = std.testing;
const utils = crypto.utils;
const EncodingError = crypto.errors.EncodingError;
const PasswordVerificationError = crypto.errors.PasswordVerificationError;
const phc_format = @import("phc_encoding.zig");
const KdfError = pwhash.KdfError;
const HasherError = pwhash.HasherError;
const EncodingError = phc_format.Error;
const Error = pwhash.Error;
const salt_length: usize = 16;
const salt_str_length: usize = 22;
const ct_str_length: usize = 31;
const ct_length: usize = 24;
const dk_length: usize = ct_length - 1;
/// Length (in bytes) of a password hash
/// Length (in bytes) of a password hash in crypt encoding
pub const hash_length: usize = 60;
const State = struct {
@ -139,71 +146,15 @@ const State = struct {
}
};
// bcrypt has its own variant of base64, with its own alphabet and no padding
const Codec = struct {
const alphabet = "./ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
fn encode(b64: []u8, bin: []const u8) void {
var i: usize = 0;
var j: usize = 0;
while (i < bin.len) {
var c1 = bin[i];
i += 1;
b64[j] = alphabet[c1 >> 2];
j += 1;
c1 = (c1 & 3) << 4;
if (i >= bin.len) {
b64[j] = alphabet[c1];
j += 1;
break;
}
var c2 = bin[i];
i += 1;
c1 |= (c2 >> 4) & 0x0f;
b64[j] = alphabet[c1];
j += 1;
c1 = (c2 & 0x0f) << 2;
if (i >= bin.len) {
b64[j] = alphabet[c1];
j += 1;
break;
}
c2 = bin[i];
i += 1;
c1 |= (c2 >> 6) & 3;
b64[j] = alphabet[c1];
b64[j + 1] = alphabet[c2 & 0x3f];
j += 2;
}
debug.assert(j == b64.len);
}
fn decode(bin: []u8, b64: []const u8) EncodingError!void {
var i: usize = 0;
var j: usize = 0;
while (j < bin.len) {
const c1 = @intCast(u8, mem.indexOfScalar(u8, alphabet, b64[i]) orelse return error.InvalidEncoding);
const c2 = @intCast(u8, mem.indexOfScalar(u8, alphabet, b64[i + 1]) orelse return error.InvalidEncoding);
bin[j] = (c1 << 2) | ((c2 & 0x30) >> 4);
j += 1;
if (j >= bin.len) {
break;
}
const c3 = @intCast(u8, mem.indexOfScalar(u8, alphabet, b64[i + 2]) orelse return error.InvalidEncoding);
bin[j] = ((c2 & 0x0f) << 4) | ((c3 & 0x3c) >> 2);
j += 1;
if (j >= bin.len) {
break;
}
const c4 = @intCast(u8, mem.indexOfScalar(u8, alphabet, b64[i + 3]) orelse return error.InvalidEncoding);
bin[j] = ((c3 & 0x03) << 6) | c4;
j += 1;
i += 4;
}
}
pub const Params = struct {
rounds_log: u6,
};
fn strHashInternal(password: []const u8, rounds_log: u6, salt: [salt_length]u8) ![hash_length]u8 {
pub fn bcrypt(
password: []const u8,
salt: [salt_length]u8,
params: Params,
) [dk_length]u8 {
var state = State{};
var password_buf: [73]u8 = undefined;
const trimmed_len = math.min(password.len, password_buf.len - 1);
@ -212,7 +163,7 @@ fn strHashInternal(password: []const u8, rounds_log: u6, salt: [salt_length]u8)
var passwordZ = password_buf[0 .. trimmed_len + 1];
state.expand(salt[0..], passwordZ);
const rounds: u64 = @as(u64, 1) << rounds_log;
const rounds: u64 = @as(u64, 1) << params.rounds_log;
var k: u64 = 0;
while (k < rounds) : (k += 1) {
state.expand0(passwordZ);
@ -230,19 +181,204 @@ fn strHashInternal(password: []const u8, rounds_log: u6, salt: [salt_length]u8)
for (cdata) |c, i| {
mem.writeIntBig(u32, ct[i * 4 ..][0..4], c);
}
var salt_str: [salt_str_length]u8 = undefined;
Codec.encode(salt_str[0..], salt[0..]);
var ct_str: [ct_str_length]u8 = undefined;
Codec.encode(ct_str[0..], ct[0 .. ct.len - 1]);
var s_buf: [hash_length]u8 = undefined;
const s = fmt.bufPrint(s_buf[0..], "$2b${d}{d}${s}{s}", .{ rounds_log / 10, rounds_log % 10, salt_str, ct_str }) catch unreachable;
debug.assert(s.len == s_buf.len);
return s_buf;
return ct[0..dk_length].*;
}
const crypt_format = struct {
/// String prefix for bcrypt
pub const prefix = "$2";
// bcrypt has its own variant of base64, with its own alphabet and no padding
const Codec = struct {
const alphabet = "./ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
fn encode(b64: []u8, bin: []const u8) void {
var i: usize = 0;
var j: usize = 0;
while (i < bin.len) {
var c1 = bin[i];
i += 1;
b64[j] = alphabet[c1 >> 2];
j += 1;
c1 = (c1 & 3) << 4;
if (i >= bin.len) {
b64[j] = alphabet[c1];
j += 1;
break;
}
var c2 = bin[i];
i += 1;
c1 |= (c2 >> 4) & 0x0f;
b64[j] = alphabet[c1];
j += 1;
c1 = (c2 & 0x0f) << 2;
if (i >= bin.len) {
b64[j] = alphabet[c1];
j += 1;
break;
}
c2 = bin[i];
i += 1;
c1 |= (c2 >> 6) & 3;
b64[j] = alphabet[c1];
b64[j + 1] = alphabet[c2 & 0x3f];
j += 2;
}
debug.assert(j == b64.len);
}
fn decode(bin: []u8, b64: []const u8) EncodingError!void {
var i: usize = 0;
var j: usize = 0;
while (j < bin.len) {
const c1 = @intCast(u8, mem.indexOfScalar(u8, alphabet, b64[i]) orelse
return EncodingError.InvalidEncoding);
const c2 = @intCast(u8, mem.indexOfScalar(u8, alphabet, b64[i + 1]) orelse
return EncodingError.InvalidEncoding);
bin[j] = (c1 << 2) | ((c2 & 0x30) >> 4);
j += 1;
if (j >= bin.len) {
break;
}
const c3 = @intCast(u8, mem.indexOfScalar(u8, alphabet, b64[i + 2]) orelse
return EncodingError.InvalidEncoding);
bin[j] = ((c2 & 0x0f) << 4) | ((c3 & 0x3c) >> 2);
j += 1;
if (j >= bin.len) {
break;
}
const c4 = @intCast(u8, mem.indexOfScalar(u8, alphabet, b64[i + 3]) orelse
return EncodingError.InvalidEncoding);
bin[j] = ((c3 & 0x03) << 6) | c4;
j += 1;
i += 4;
}
}
};
fn strHashInternal(
password: []const u8,
salt: [salt_length]u8,
params: Params,
) [hash_length]u8 {
var dk = bcrypt(password, salt, params);
var salt_str: [salt_str_length]u8 = undefined;
Codec.encode(salt_str[0..], salt[0..]);
var ct_str: [ct_str_length]u8 = undefined;
Codec.encode(ct_str[0..], dk[0..]);
var s_buf: [hash_length]u8 = undefined;
const s = fmt.bufPrint(
s_buf[0..],
"{s}b${d}{d}${s}{s}",
.{ prefix, params.rounds_log / 10, params.rounds_log % 10, salt_str, ct_str },
) catch unreachable;
debug.assert(s.len == s_buf.len);
return s_buf;
}
};
/// Hash and verify passwords using the PHC format.
const PhcFormatHasher = struct {
const alg_id = "bcrypt";
const BinValue = phc_format.BinValue;
const HashResult = struct {
alg_id: []const u8,
r: u6,
salt: BinValue(salt_length),
hash: BinValue(dk_length),
};
/// Return a non-deterministic hash of the password encoded as a PHC-format string
pub fn create(
password: []const u8,
params: Params,
buf: []u8,
) HasherError![]const u8 {
var salt: [salt_length]u8 = undefined;
crypto.random.bytes(&salt);
const hash = bcrypt(password, salt, params);
return phc_format.serialize(HashResult{
.alg_id = alg_id,
.r = params.rounds_log,
.salt = try BinValue(salt_length).fromSlice(&salt),
.hash = try BinValue(dk_length).fromSlice(&hash),
}, buf);
}
/// Verify a password against a PHC-format encoded string
pub fn verify(
str: []const u8,
password: []const u8,
) HasherError!void {
const hash_result = try phc_format.deserialize(HashResult, str);
if (!mem.eql(u8, hash_result.alg_id, alg_id)) return HasherError.PasswordVerificationFailed;
if (hash_result.salt.len != salt_length or hash_result.hash.len != dk_length)
return HasherError.InvalidEncoding;
const hash = bcrypt(password, hash_result.salt.buf, .{ .rounds_log = hash_result.r });
const expected_hash = hash_result.hash.constSlice();
if (!mem.eql(u8, &hash, expected_hash)) return HasherError.PasswordVerificationFailed;
}
};
/// Hash and verify passwords using the modular crypt format.
const CryptFormatHasher = struct {
/// Length of a string returned by the create() function
pub const pwhash_str_length: usize = hash_length;
/// Return a non-deterministic hash of the password encoded into the modular crypt format
pub fn create(
password: []const u8,
params: Params,
buf: []u8,
) HasherError![]const u8 {
if (buf.len < pwhash_str_length) return HasherError.NoSpaceLeft;
var salt: [salt_length]u8 = undefined;
crypto.random.bytes(&salt);
const hash = crypt_format.strHashInternal(password, salt, params);
mem.copy(u8, buf, &hash);
return buf[0..pwhash_str_length];
}
/// Verify a password against a string in modular crypt format
pub fn verify(
str: []const u8,
password: []const u8,
) HasherError!void {
if (str.len != pwhash_str_length or str[3] != '$' or str[6] != '$')
return HasherError.InvalidEncoding;
const rounds_log_str = str[4..][0..2];
const rounds_log = fmt.parseInt(u6, rounds_log_str[0..], 10) catch
return HasherError.InvalidEncoding;
const salt_str = str[7..][0..salt_str_length];
var salt: [salt_length]u8 = undefined;
try crypt_format.Codec.decode(salt[0..], salt_str[0..]);
const wanted_s = crypt_format.strHashInternal(password, salt, .{ .rounds_log = rounds_log });
if (!mem.eql(u8, wanted_s[0..], str[0..])) return HasherError.PasswordVerificationFailed;
}
};
/// Options for hashing a password.
pub const HashOptions = struct {
allocator: ?*mem.Allocator = null,
params: Params,
encoding: pwhash.Encoding,
};
/// Compute a hash of a password using 2^rounds_log rounds of the bcrypt key stretching function.
/// bcrypt is a computationally expensive and cache-hard function, explicitly designed to slow down exhaustive searches.
///
@ -251,24 +387,32 @@ fn strHashInternal(password: []const u8, rounds_log: u6, salt: [salt_length]u8)
/// IMPORTANT: by design, bcrypt silently truncates passwords to 72 bytes.
/// If this is an issue for your application, hash the password first using a function such as SHA-512,
/// and then use the resulting hash as the password parameter for bcrypt.
pub fn strHash(password: []const u8, rounds_log: u6) ![hash_length]u8 {
var salt: [salt_length]u8 = undefined;
crypto.random.bytes(&salt);
return strHashInternal(password, rounds_log, salt);
pub fn strHash(
password: []const u8,
options: HashOptions,
out: []u8,
) Error![]const u8 {
switch (options.encoding) {
.phc => return PhcFormatHasher.create(password, options.params, out),
.crypt => return CryptFormatHasher.create(password, options.params, out),
}
}
/// Options for hash verification.
pub const VerifyOptions = struct {
allocator: ?*mem.Allocator = null,
};
/// Verify that a previously computed hash is valid for a given password.
pub fn strVerify(h: [hash_length]u8, password: []const u8) (EncodingError || PasswordVerificationError)!void {
if (!mem.eql(u8, "$2", h[0..2])) return error.InvalidEncoding;
if (h[3] != '$' or h[6] != '$') return error.InvalidEncoding;
const rounds_log_str = h[4..][0..2];
const salt_str = h[7..][0..salt_str_length];
var salt: [salt_length]u8 = undefined;
try Codec.decode(salt[0..], salt_str[0..]);
const rounds_log = fmt.parseInt(u6, rounds_log_str[0..], 10) catch return error.InvalidEncoding;
const wanted_s = try strHashInternal(password, rounds_log, salt);
if (!mem.eql(u8, wanted_s[0..], h[0..])) {
return error.PasswordVerificationFailed;
pub fn strVerify(
str: []const u8,
password: []const u8,
_: VerifyOptions,
) Error!void {
if (mem.startsWith(u8, str, crypt_format.prefix)) {
return CryptFormatHasher.verify(str, password);
} else {
return PhcFormatHasher.verify(str, password);
}
}
@ -276,20 +420,71 @@ test "bcrypt codec" {
var salt: [salt_length]u8 = undefined;
crypto.random.bytes(&salt);
var salt_str: [salt_str_length]u8 = undefined;
Codec.encode(salt_str[0..], salt[0..]);
crypt_format.Codec.encode(salt_str[0..], salt[0..]);
var salt2: [salt_length]u8 = undefined;
try Codec.decode(salt2[0..], salt_str[0..]);
try crypt_format.Codec.decode(salt2[0..], salt_str[0..]);
try testing.expectEqualSlices(u8, salt[0..], salt2[0..]);
}
test "bcrypt" {
const s = try strHash("password", 5);
try strVerify(s, "password");
try testing.expectError(error.PasswordVerificationFailed, strVerify(s, "invalid password"));
test "bcrypt crypt format" {
const hash_options = HashOptions{
.params = .{ .rounds_log = 5 },
.encoding = .crypt,
};
const verify_options = VerifyOptions{};
const long_s = try strHash("password" ** 100, 5);
try strVerify(long_s, "password" ** 100);
try strVerify(long_s, "password" ** 101);
var buf: [hash_length]u8 = undefined;
const s = try strHash("password", hash_options, &buf);
try strVerify("$2b$08$WUQKyBCaKpziCwUXHiMVvu40dYVjkTxtWJlftl0PpjY2BxWSvFIEe".*, "The devil himself");
try testing.expect(mem.startsWith(u8, s, crypt_format.prefix));
try strVerify(s, "password", verify_options);
try testing.expectError(
error.PasswordVerificationFailed,
strVerify(s, "invalid password", verify_options),
);
var long_buf: [hash_length]u8 = undefined;
const long_s = try strHash("password" ** 100, hash_options, &long_buf);
try testing.expect(mem.startsWith(u8, long_s, crypt_format.prefix));
try strVerify(long_s, "password" ** 100, verify_options);
try strVerify(long_s, "password" ** 101, verify_options);
try strVerify(
"$2b$08$WUQKyBCaKpziCwUXHiMVvu40dYVjkTxtWJlftl0PpjY2BxWSvFIEe",
"The devil himself",
verify_options,
);
}
test "bcrypt phc format" {
const hash_options = HashOptions{
.params = .{ .rounds_log = 5 },
.encoding = .phc,
};
const verify_options = VerifyOptions{};
const prefix = "$bcrypt$";
var buf: [hash_length * 2]u8 = undefined;
const s = try strHash("password", hash_options, &buf);
try testing.expect(mem.startsWith(u8, s, prefix));
try strVerify(s, "password", verify_options);
try testing.expectError(
error.PasswordVerificationFailed,
strVerify(s, "invalid password", verify_options),
);
var long_buf: [hash_length * 2]u8 = undefined;
const long_s = try strHash("password" ** 100, hash_options, &long_buf);
try testing.expect(mem.startsWith(u8, long_s, prefix));
try strVerify(long_s, "password" ** 100, verify_options);
try strVerify(long_s, "password" ** 101, verify_options);
try strVerify(
"$bcrypt$r=5$2NopntlgE2lX3cTwr4qz8A$r3T7iKYQNnY4hAhGjk9RmuyvgrYJZwc",
"The devil himself",
verify_options,
);
}

View file

@ -300,6 +300,43 @@ pub fn benchmarkAes8(comptime Aes: anytype, comptime count: comptime_int) !u64 {
return throughput;
}
const CryptoPwhash = struct {
hashFn: anytype,
params: anytype,
name: []const u8,
};
const bcrypt_params = bcrypt.Params{ .rounds_log = 5 };
const pwhashes = [_]CryptoPwhash{
CryptoPwhash{ .hashFn = bcrypt.strHash, .params = bcrypt_params, .name = "bcrypt" },
CryptoPwhash{ .hashFn = scrypt.strHash, .params = scrypt.Params.interactive, .name = "scrypt" },
};
fn benchmarkPwhash(
comptime hashFn: anytype,
comptime params: anytype,
comptime count: comptime_int,
) !u64 {
const password = "testpass" ** 2;
const opts = .{ .allocator = std.testing.allocator, .params = params, .encoding = .phc };
var buf: [256]u8 = undefined;
var timer = try Timer.start();
const start = timer.lap();
{
var i: usize = 0;
while (i < count) : (i += 1) {
_ = try hashFn(password, opts, &buf);
mem.doNotOptimizeAway(&buf);
}
}
const end = timer.read();
const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
const throughput = @floatToInt(u64, count / elapsed_s);
return throughput;
}
fn usage() void {
std.debug.warn(
\\throughput_test [options]
@ -418,4 +455,11 @@ pub fn main() !void {
try stdout.print("{s:>17}: {:10} ops/s\n", .{ E.name, throughput });
}
}
inline for (pwhashes) |H| {
if (filter == null or std.mem.indexOf(u8, H.name, filter.?) != null) {
const throughput = try benchmarkPwhash(H.hashFn, H.params, mode(64));
try stdout.print("{s:>17}: {:10} ops/s\n", .{ H.name, throughput });
}
}
}

View file

@ -0,0 +1,377 @@
// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// https://github.com/P-H-C/phc-string-format
const std = @import("std");
const fmt = std.fmt;
const io = std.io;
const mem = std.mem;
const meta = std.meta;
const fields_delimiter = "$";
const version_param_name = "v";
const params_delimiter = ",";
const kv_delimiter = "=";
pub const Error = std.crypto.errors.EncodingError || error{NoSpaceLeft};
const B64Decoder = std.base64.standard_no_pad.Decoder;
const B64Encoder = std.base64.standard_no_pad.Encoder;
/// A wrapped binary value whose maximum size is `max_len`.
///
/// This type must be used whenever a binary value is encoded in a PHC-formatted string.
/// This includes `salt`, `hash`, and any other binary parameters such as keys.
///
/// Once initialized, the actual value can be read with the `constSlice()` function.
pub fn BinValue(comptime max_len: usize) type {
return struct {
const Self = @This();
const capacity = max_len;
const max_encoded_length = B64Encoder.calcSize(max_len);
buf: [max_len]u8 = undefined,
len: usize = 0,
/// Wrap an existing byte slice
pub fn fromSlice(slice: []const u8) Error!Self {
if (slice.len > capacity) return Error.NoSpaceLeft;
var bin_value: Self = undefined;
mem.copy(u8, &bin_value.buf, slice);
bin_value.len = slice.len;
return bin_value;
}
/// Return the slice containing the actual value.
pub fn constSlice(self: Self) []const u8 {
return self.buf[0..self.len];
}
fn fromB64(self: *Self, str: []const u8) !void {
const len = B64Decoder.calcSizeForSlice(str) catch return Error.InvalidEncoding;
if (len > self.buf.len) return Error.NoSpaceLeft;
B64Decoder.decode(&self.buf, str) catch return Error.InvalidEncoding;
self.len = len;
}
fn toB64(self: Self, buf: []u8) ![]const u8 {
const value = self.constSlice();
const len = B64Encoder.calcSize(value.len);
if (len > buf.len) return Error.NoSpaceLeft;
return B64Encoder.encode(buf, value);
}
};
}
/// Deserialize a PHC-formatted string into a structure `HashResult`.
///
/// Required field in the `HashResult` structure:
/// - `alg_id`: algorithm identifier
/// Optional, special fields:
/// - `alg_version`: algorithm version (unsigned integer)
/// - `salt`: salt
/// - `hash`: output of the hash function
///
/// Other fields will also be deserialized from the function parameters section.
pub fn deserialize(comptime HashResult: type, str: []const u8) Error!HashResult {
var out = mem.zeroes(HashResult);
var it = mem.split(u8, str, fields_delimiter);
var set_fields: usize = 0;
while (true) {
// Read the algorithm identifier
if ((it.next() orelse return Error.InvalidEncoding).len != 0) return Error.InvalidEncoding;
out.alg_id = it.next() orelse return Error.InvalidEncoding;
set_fields += 1;
// Read the optional version number
var field = it.next() orelse break;
if (kvSplit(field)) |opt_version| {
if (mem.eql(u8, opt_version.key, version_param_name)) {
if (@hasField(HashResult, "alg_version")) {
const value_type_info = switch (@typeInfo(@TypeOf(out.alg_version))) {
.Optional => |opt| comptime @typeInfo(opt.child),
else => |t| t,
};
out.alg_version = fmt.parseUnsigned(
@Type(value_type_info),
opt_version.value,
10,
) catch return Error.InvalidEncoding;
set_fields += 1;
}
field = it.next() orelse break;
}
} else |_| {}
// Read optional parameters
var has_params = false;
var it_params = mem.split(u8, field, params_delimiter);
while (it_params.next()) |params| {
const param = kvSplit(params) catch break;
var found = false;
inline for (comptime meta.fields(HashResult)) |p| {
if (mem.eql(u8, p.name, param.key)) {
switch (@typeInfo(p.field_type)) {
.Int => @field(out, p.name) = fmt.parseUnsigned(
p.field_type,
param.value,
10,
) catch return Error.InvalidEncoding,
.Pointer => |ptr| {
if (!ptr.is_const) @compileError("Value slice must be constant");
@field(out, p.name) = param.value;
},
.Struct => try @field(out, p.name).fromB64(param.value),
else => std.debug.panic(
"Value for [{s}] must be an integer, a constant slice or a BinValue",
.{p.name},
),
}
set_fields += 1;
found = true;
break;
}
}
if (!found) return Error.InvalidEncoding; // An unexpected parameter was found in the string
has_params = true;
}
// No separator between an empty parameters set and the salt
if (has_params) field = it.next() orelse break;
// Read an optional salt
if (@hasField(HashResult, "salt")) {
try out.salt.fromB64(field);
set_fields += 1;
} else {
return Error.InvalidEncoding;
}
// Read an optional hash
field = it.next() orelse break;
if (@hasField(HashResult, "hash")) {
try out.hash.fromB64(field);
set_fields += 1;
} else {
return Error.InvalidEncoding;
}
break;
}
// Check that all the required fields have been set, excluding optional values and parameters
// with default values
var expected_fields: usize = 0;
inline for (comptime meta.fields(HashResult)) |p| {
if (@typeInfo(p.field_type) != .Optional and p.default_value == null) {
expected_fields += 1;
}
}
if (set_fields < expected_fields) return Error.InvalidEncoding;
return out;
}
/// Serialize parameters into a PHC string.
///
/// Required field for `params`:
/// - `alg_id`: algorithm identifier
/// Optional, special fields:
/// - `alg_version`: algorithm version (unsigned integer)
/// - `salt`: salt
/// - `hash`: output of the hash function
///
/// `params` can also include any additional parameters.
pub fn serialize(params: anytype, str: []u8) Error![]const u8 {
var buf = io.fixedBufferStream(str);
try serializeTo(params, buf.writer());
return buf.getWritten();
}
/// Compute the number of bytes required to serialize `params`
pub fn calcSize(params: anytype) usize {
var buf = io.countingWriter(io.null_writer);
serializeTo(params, buf.writer()) catch unreachable;
return @intCast(usize, buf.bytes_written);
}
fn serializeTo(params: anytype, out: anytype) !void {
const HashResult = @TypeOf(params);
try out.writeAll(fields_delimiter);
try out.writeAll(params.alg_id);
if (@hasField(HashResult, "alg_version")) {
if (@typeInfo(@TypeOf(params.alg_version)) == .Optional) {
if (params.alg_version) |alg_version| {
try out.print(
"{s}{s}{s}{}",
.{ fields_delimiter, version_param_name, kv_delimiter, alg_version },
);
}
} else {
try out.print(
"{s}{s}{s}{}",
.{ fields_delimiter, version_param_name, kv_delimiter, params.alg_version },
);
}
}
var has_params = false;
inline for (comptime meta.fields(HashResult)) |p| {
if (!(mem.eql(u8, p.name, "alg_id") or
mem.eql(u8, p.name, "alg_version") or
mem.eql(u8, p.name, "hash") or
mem.eql(u8, p.name, "salt")))
{
const value = @field(params, p.name);
try out.writeAll(if (has_params) params_delimiter else fields_delimiter);
if (@typeInfo(p.field_type) == .Struct) {
var buf: [@TypeOf(value).max_encoded_length]u8 = undefined;
try out.print("{s}{s}{s}", .{ p.name, kv_delimiter, try value.toB64(&buf) });
} else {
try out.print(
if (@typeInfo(@TypeOf(value)) == .Pointer) "{s}{s}{s}" else "{s}{s}{}",
.{ p.name, kv_delimiter, value },
);
}
has_params = true;
}
}
var has_salt = false;
if (@hasField(HashResult, "salt")) {
var buf: [@TypeOf(params.salt).max_encoded_length]u8 = undefined;
try out.print("{s}{s}", .{ fields_delimiter, try params.salt.toB64(&buf) });
has_salt = true;
}
if (@hasField(HashResult, "hash")) {
var buf: [@TypeOf(params.hash).max_encoded_length]u8 = undefined;
if (!has_salt) try out.writeAll(fields_delimiter);
try out.print("{s}{s}", .{ fields_delimiter, try params.hash.toB64(&buf) });
}
}
// Split a `key=value` string into `key` and `value`
fn kvSplit(str: []const u8) !struct { key: []const u8, value: []const u8 } {
var it = mem.split(u8, str, kv_delimiter);
const key = it.next() orelse return Error.InvalidEncoding;
const value = it.next() orelse return Error.InvalidEncoding;
const ret = .{ .key = key, .value = value };
return ret;
}
test "phc format - encoding/decoding" {
const Input = struct {
str: []const u8,
HashResult: type,
};
const inputs = [_]Input{
.{
.str = "$argon2id$v=19$key=a2V5,m=4096,t=0,p=1$X1NhbHQAAAAAAAAAAAAAAA$bWh++MKN1OiFHKgIWTLvIi1iHicmHH7+Fv3K88ifFfI",
.HashResult = struct {
alg_id: []const u8,
alg_version: u16,
key: BinValue(16),
m: usize,
t: u64,
p: u32,
salt: BinValue(16),
hash: BinValue(32),
},
},
.{
.str = "$scrypt$v=1$ln=15,r=8,p=1$c2FsdHNhbHQ$dGVzdHBhc3M",
.HashResult = struct {
alg_id: []const u8,
alg_version: ?u30,
ln: u6,
r: u30,
p: u30,
salt: BinValue(16),
hash: BinValue(16),
},
},
.{
.str = "$scrypt",
.HashResult = struct { alg_id: []const u8 },
},
.{ .str = "$scrypt$v=1", .HashResult = struct { alg_id: []const u8, alg_version: u16 } },
.{
.str = "$scrypt$ln=15,r=8,p=1",
.HashResult = struct { alg_id: []const u8, alg_version: ?u30, ln: u6, r: u30, p: u30 },
},
.{
.str = "$scrypt$c2FsdHNhbHQ",
.HashResult = struct { alg_id: []const u8, salt: BinValue(16) },
},
.{
.str = "$scrypt$v=1$ln=15,r=8,p=1$c2FsdHNhbHQ",
.HashResult = struct {
alg_id: []const u8,
alg_version: u16,
ln: u6,
r: u30,
p: u30,
salt: BinValue(16),
},
},
.{
.str = "$scrypt$v=1$ln=15,r=8,p=1",
.HashResult = struct { alg_id: []const u8, alg_version: ?u30, ln: u6, r: u30, p: u30 },
},
.{
.str = "$scrypt$v=1$c2FsdHNhbHQ$dGVzdHBhc3M",
.HashResult = struct {
alg_id: []const u8,
alg_version: u16,
salt: BinValue(16),
hash: BinValue(16),
},
},
.{
.str = "$scrypt$v=1$c2FsdHNhbHQ",
.HashResult = struct { alg_id: []const u8, alg_version: u16, salt: BinValue(16) },
},
.{
.str = "$scrypt$c2FsdHNhbHQ$dGVzdHBhc3M",
.HashResult = struct { alg_id: []const u8, salt: BinValue(16), hash: BinValue(16) },
},
};
inline for (inputs) |input| {
const v = try deserialize(input.HashResult, input.str);
var buf: [input.str.len]u8 = undefined;
const s1 = try serialize(v, &buf);
try std.testing.expectEqualSlices(u8, input.str, s1);
}
}
test "phc format - empty input string" {
const s = "";
const v = deserialize(struct { alg_id: []const u8 }, s);
try std.testing.expectError(Error.InvalidEncoding, v);
}
test "phc format - hash without salt" {
const s = "$scrypt";
const v = deserialize(struct { alg_id: []const u8, hash: BinValue(16) }, s);
try std.testing.expectError(Error.InvalidEncoding, v);
}
test "phc format - calcSize" {
const s = "$scrypt$v=1$ln=15,r=8,p=1$c2FsdHNhbHQ$dGVzdHBhc3M";
const v = try deserialize(struct {
alg_id: []const u8,
alg_version: u16,
ln: u6,
r: u30,
p: u30,
salt: BinValue(8),
hash: BinValue(8),
}, s);
try std.testing.expectEqual(calcSize(v), s.len);
}

663
lib/std/crypto/scrypt.zig Normal file
View file

@ -0,0 +1,663 @@
// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// https://tools.ietf.org/html/rfc7914
// https://github.com/golang/crypto/blob/master/scrypt/scrypt.go
const std = @import("std");
const crypto = std.crypto;
const fmt = std.fmt;
const io = std.io;
const math = std.math;
const mem = std.mem;
const meta = std.meta;
const pwhash = crypto.pwhash;
const phc_format = @import("phc_encoding.zig");
const HmacSha256 = crypto.auth.hmac.sha2.HmacSha256;
const KdfError = pwhash.KdfError;
const HasherError = pwhash.HasherError;
const EncodingError = phc_format.Error;
const Error = pwhash.Error;
const max_size = math.maxInt(usize);
const max_int = max_size >> 1;
const default_salt_len = 32;
const default_hash_len = 32;
const max_salt_len = 64;
const max_hash_len = 64;
fn blockCopy(dst: []align(16) u32, src: []align(16) const u32, n: usize) void {
mem.copy(u32, dst, src[0 .. n * 16]);
}
fn blockXor(dst: []align(16) u32, src: []align(16) const u32, n: usize) void {
for (src[0 .. n * 16]) |v, i| {
dst[i] ^= v;
}
}
const QuarterRound = struct { a: usize, b: usize, c: usize, d: u6 };
fn Rp(a: usize, b: usize, c: usize, d: u6) QuarterRound {
return QuarterRound{ .a = a, .b = b, .c = c, .d = d };
}
fn salsa8core(b: *align(16) [16]u32) void {
const arx_steps = comptime [_]QuarterRound{
Rp(4, 0, 12, 7), Rp(8, 4, 0, 9), Rp(12, 8, 4, 13), Rp(0, 12, 8, 18),
Rp(9, 5, 1, 7), Rp(13, 9, 5, 9), Rp(1, 13, 9, 13), Rp(5, 1, 13, 18),
Rp(14, 10, 6, 7), Rp(2, 14, 10, 9), Rp(6, 2, 14, 13), Rp(10, 6, 2, 18),
Rp(3, 15, 11, 7), Rp(7, 3, 15, 9), Rp(11, 7, 3, 13), Rp(15, 11, 7, 18),
Rp(1, 0, 3, 7), Rp(2, 1, 0, 9), Rp(3, 2, 1, 13), Rp(0, 3, 2, 18),
Rp(6, 5, 4, 7), Rp(7, 6, 5, 9), Rp(4, 7, 6, 13), Rp(5, 4, 7, 18),
Rp(11, 10, 9, 7), Rp(8, 11, 10, 9), Rp(9, 8, 11, 13), Rp(10, 9, 8, 18),
Rp(12, 15, 14, 7), Rp(13, 12, 15, 9), Rp(14, 13, 12, 13), Rp(15, 14, 13, 18),
};
var x = b.*;
var j: usize = 0;
while (j < 8) : (j += 2) {
inline for (arx_steps) |r| {
x[r.a] ^= math.rotl(u32, x[r.b] +% x[r.c], r.d);
}
}
j = 0;
while (j < 16) : (j += 1) {
b[j] +%= x[j];
}
}
fn salsaXor(tmp: *align(16) [16]u32, in: []align(16) const u32, out: []align(16) u32) void {
blockXor(tmp, in, 1);
salsa8core(tmp);
blockCopy(out, tmp, 1);
}
fn blockMix(tmp: *align(16) [16]u32, in: []align(16) const u32, out: []align(16) u32, r: u30) void {
blockCopy(tmp, in[(2 * r - 1) * 16 ..], 1);
var i: usize = 0;
while (i < 2 * r) : (i += 2) {
salsaXor(tmp, in[i * 16 ..], out[i * 8 ..]);
salsaXor(tmp, in[i * 16 + 16 ..], out[i * 8 + r * 16 ..]);
}
}
fn integerify(b: []align(16) const u32, r: u30) u64 {
const j = (2 * r - 1) * 16;
return @as(u64, b[j]) | @as(u64, b[j + 1]) << 32;
}
fn smix(b: []align(16) u8, r: u30, n: usize, v: []align(16) u32, xy: []align(16) u32) void {
var x = xy[0 .. 32 * r];
var y = xy[32 * r ..];
for (x) |*v1, j| {
v1.* = mem.readIntSliceLittle(u32, b[4 * j ..]);
}
var tmp: [16]u32 align(16) = undefined;
var i: usize = 0;
while (i < n) : (i += 2) {
blockCopy(v[i * (32 * r) ..], x, 2 * r);
blockMix(&tmp, x, y, r);
blockCopy(v[(i + 1) * (32 * r) ..], y, 2 * r);
blockMix(&tmp, y, x, r);
}
i = 0;
while (i < n) : (i += 2) {
var j = @intCast(usize, integerify(x, r) & (n - 1));
blockXor(x, v[j * (32 * r) ..], 2 * r);
blockMix(&tmp, x, y, r);
j = @intCast(usize, integerify(y, r) & (n - 1));
blockXor(y, v[j * (32 * r) ..], 2 * r);
blockMix(&tmp, y, x, r);
}
for (x) |v1, j| {
mem.writeIntLittle(u32, b[4 * j ..][0..4], v1);
}
}
pub const Params = struct {
const Self = @This();
ln: u6,
r: u30,
p: u30,
/// Baseline parameters for interactive logins
pub const interactive = Self.fromLimits(524288, 16777216);
/// Baseline parameters for offline usage
pub const sensitive = Self.fromLimits(33554432, 1073741824);
/// Create parameters from ops and mem limits
pub fn fromLimits(ops_limit: u64, mem_limit: usize) Self {
const ops = math.max(32768, ops_limit);
const r: u30 = 8;
if (ops < mem_limit / 32) {
const max_n = ops / (r * 4);
return Self{ .r = r, .p = 1, .ln = @intCast(u6, math.log2(max_n)) };
} else {
const max_n = mem_limit / (@intCast(usize, r) * 128);
const ln = @intCast(u6, math.log2(max_n));
const max_rp = math.min(0x3fffffff, (ops / 4) / (@as(u64, 1) << ln));
return Self{ .r = r, .p = @intCast(u30, max_rp / @as(u64, r)), .ln = ln };
}
}
};
/// Apply scrypt to generate a key from a password.
///
/// scrypt is defined in RFC 7914.
///
/// allocator: *mem.Allocator.
///
/// derived_key: Slice of appropriate size for generated key. Generally 16 or 32 bytes in length.
/// May be uninitialized. All bytes will be overwritten.
/// Maximum size is `derived_key.len / 32 == 0xffff_ffff`.
///
/// password: Arbitrary sequence of bytes of any length.
///
/// salt: Arbitrary sequence of bytes of any length.
///
/// params: Params.
pub fn kdf(
allocator: *mem.Allocator,
derived_key: []u8,
password: []const u8,
salt: []const u8,
params: Params,
) KdfError!void {
if (derived_key.len == 0 or derived_key.len / 32 > 0xffff_ffff) return KdfError.OutputTooLong;
if (params.ln == 0 or params.r == 0 or params.p == 0) return KdfError.WeakParameters;
const n64 = @as(u64, 1) << params.ln;
if (n64 > max_size) return KdfError.WeakParameters;
const n = @intCast(usize, n64);
if (@as(u64, params.r) * @as(u64, params.p) >= 1 << 30 or
params.r > max_int / 128 / @as(u64, params.p) or
params.r > max_int / 256 or
n > max_int / 128 / @as(u64, params.r)) return KdfError.WeakParameters;
var xy = try allocator.alignedAlloc(u32, 16, 64 * params.r);
defer allocator.free(xy);
var v = try allocator.alignedAlloc(u32, 16, 32 * n * params.r);
defer allocator.free(v);
var dk = try allocator.alignedAlloc(u8, 16, params.p * 128 * params.r);
defer allocator.free(dk);
try pwhash.pbkdf2(dk, password, salt, 1, HmacSha256);
var i: u32 = 0;
while (i < params.p) : (i += 1) {
smix(dk[i * 128 * params.r ..], params.r, n, v, xy);
}
try pwhash.pbkdf2(derived_key, password, dk, 1, HmacSha256);
}
const crypt_format = struct {
/// String prefix for scrypt
pub const prefix = "$7$";
/// Standard type for a set of scrypt parameters, with the salt and hash.
pub fn HashResult(comptime crypt_max_hash_len: usize) type {
return struct {
ln: u6,
r: u30,
p: u30,
salt: []const u8,
hash: BinValue(crypt_max_hash_len),
};
}
const Codec = CustomB64Codec("./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".*);
/// A wrapped binary value whose maximum size is `max_len`.
///
/// This type must be used whenever a binary value is encoded in a PHC-formatted string.
/// This includes `salt`, `hash`, and any other binary parameters such as keys.
///
/// Once initialized, the actual value can be read with the `constSlice()` function.
pub fn BinValue(comptime max_len: usize) type {
return struct {
const Self = @This();
const capacity = max_len;
const max_encoded_length = Codec.encodedLen(max_len);
buf: [max_len]u8 = undefined,
len: usize = 0,
/// Wrap an existing byte slice
pub fn fromSlice(slice: []const u8) EncodingError!Self {
if (slice.len > capacity) return EncodingError.NoSpaceLeft;
var bin_value: Self = undefined;
mem.copy(u8, &bin_value.buf, slice);
bin_value.len = slice.len;
return bin_value;
}
/// Return the slice containing the actual value.
pub fn constSlice(self: Self) []const u8 {
return self.buf[0..self.len];
}
fn fromB64(self: *Self, str: []const u8) !void {
const len = Codec.decodedLen(str.len);
if (len > self.buf.len) return EncodingError.NoSpaceLeft;
try Codec.decode(self.buf[0..len], str);
self.len = len;
}
fn toB64(self: Self, buf: []u8) ![]const u8 {
const value = self.constSlice();
const len = Codec.encodedLen(value.len);
if (len > buf.len) return EncodingError.NoSpaceLeft;
var encoded = buf[0..len];
Codec.encode(encoded, value);
return encoded;
}
};
}
/// Expand binary data into a salt for the modular crypt format.
pub fn saltFromBin(comptime len: usize, salt: [len]u8) [Codec.encodedLen(len)]u8 {
var buf: [Codec.encodedLen(len)]u8 = undefined;
Codec.encode(&buf, &salt);
return buf;
}
/// Deserialize a string into a structure `T` (matching `HashResult`).
pub fn deserialize(comptime T: type, str: []const u8) EncodingError!T {
var out: T = undefined;
if (str.len < 16) return EncodingError.InvalidEncoding;
if (!mem.eql(u8, prefix, str[0..3])) return EncodingError.InvalidEncoding;
out.ln = try Codec.intDecode(u6, str[3..4]);
out.r = try Codec.intDecode(u30, str[4..9]);
out.p = try Codec.intDecode(u30, str[9..14]);
var it = mem.split(u8, str[14..], "$");
const salt = it.next() orelse return EncodingError.InvalidEncoding;
if (@hasField(T, "salt")) out.salt = salt;
const hash_str = it.next() orelse return EncodingError.InvalidEncoding;
if (@hasField(T, "hash")) try out.hash.fromB64(hash_str);
return out;
}
/// Serialize parameters into a string in modular crypt format.
pub fn serialize(params: anytype, str: []u8) EncodingError![]const u8 {
var buf = io.fixedBufferStream(str);
try serializeTo(params, buf.writer());
return buf.getWritten();
}
/// Compute the number of bytes required to serialize `params`
pub fn calcSize(params: anytype) usize {
var buf = io.countingWriter(io.null_writer);
serializeTo(params, buf.writer()) catch unreachable;
return @intCast(usize, buf.bytes_written);
}
fn serializeTo(params: anytype, out: anytype) !void {
var header: [14]u8 = undefined;
mem.copy(u8, header[0..3], prefix);
Codec.intEncode(header[3..4], params.ln);
Codec.intEncode(header[4..9], params.r);
Codec.intEncode(header[9..14], params.p);
try out.writeAll(&header);
try out.writeAll(params.salt);
try out.writeAll("$");
var buf: [@TypeOf(params.hash).max_encoded_length]u8 = undefined;
const hash_str = try params.hash.toB64(&buf);
try out.writeAll(hash_str);
}
/// Custom codec that maps 6 bits into 8 like regular Base64, but uses its own alphabet,
/// encodes bits in little-endian, and can also encode integers.
fn CustomB64Codec(comptime map: [64]u8) type {
return struct {
const map64 = map;
fn encodedLen(len: usize) usize {
return (len * 4 + 2) / 3;
}
fn decodedLen(len: usize) usize {
return len / 4 * 3 + (len % 4) * 3 / 4;
}
fn intEncode(dst: []u8, src: anytype) void {
var n = src;
for (dst) |*x| {
x.* = map64[@truncate(u6, n)];
n = math.shr(@TypeOf(src), n, 6);
}
}
fn intDecode(comptime T: type, src: *const [(meta.bitCount(T) + 5) / 6]u8) !T {
var v: T = 0;
for (src) |x, i| {
const vi = mem.indexOfScalar(u8, &map64, x) orelse return EncodingError.InvalidEncoding;
v |= @intCast(T, vi) << @intCast(math.Log2Int(T), i * 6);
}
return v;
}
fn decode(dst: []u8, src: []const u8) !void {
std.debug.assert(dst.len == decodedLen(src.len));
var i: usize = 0;
while (i < src.len / 4) : (i += 1) {
mem.writeIntSliceLittle(u24, dst[i * 3 ..], try intDecode(u24, src[i * 4 ..][0..4]));
}
const leftover = src[i * 4 ..];
var v: u24 = 0;
for (leftover) |_, j| {
v |= @as(u24, try intDecode(u6, leftover[j..][0..1])) << @intCast(u5, j * 6);
}
for (dst[i * 3 ..]) |*x, j| {
x.* = @truncate(u8, v >> @intCast(u5, j * 8));
}
}
fn encode(dst: []u8, src: []const u8) void {
std.debug.assert(dst.len == encodedLen(src.len));
var i: usize = 0;
while (i < src.len / 3) : (i += 1) {
intEncode(dst[i * 4 ..][0..4], mem.readIntSliceLittle(u24, src[i * 3 ..]));
}
const leftover = src[i * 3 ..];
var v: u24 = 0;
for (leftover) |x, j| {
v |= @as(u24, x) << @intCast(u5, j * 8);
}
intEncode(dst[i * 4 ..], v);
}
};
}
};
/// Hash and verify passwords using the PHC format.
const PhcFormatHasher = struct {
const alg_id = "scrypt";
const BinValue = phc_format.BinValue;
const HashResult = struct {
alg_id: []const u8,
ln: u6,
r: u30,
p: u30,
salt: BinValue(max_salt_len),
hash: BinValue(max_hash_len),
};
/// Return a non-deterministic hash of the password encoded as a PHC-format string
pub fn create(
allocator: *mem.Allocator,
password: []const u8,
params: Params,
buf: []u8,
) HasherError![]const u8 {
var salt: [default_salt_len]u8 = undefined;
crypto.random.bytes(&salt);
var hash: [default_hash_len]u8 = undefined;
try kdf(allocator, &hash, password, &salt, params);
return phc_format.serialize(HashResult{
.alg_id = alg_id,
.ln = params.ln,
.r = params.r,
.p = params.p,
.salt = try BinValue(max_salt_len).fromSlice(&salt),
.hash = try BinValue(max_hash_len).fromSlice(&hash),
}, buf);
}
/// Verify a password against a PHC-format encoded string
pub fn verify(
allocator: *mem.Allocator,
str: []const u8,
password: []const u8,
) HasherError!void {
const hash_result = try phc_format.deserialize(HashResult, str);
if (!mem.eql(u8, hash_result.alg_id, alg_id)) return HasherError.PasswordVerificationFailed;
const params = Params{ .ln = hash_result.ln, .r = hash_result.r, .p = hash_result.p };
const expected_hash = hash_result.hash.constSlice();
var hash_buf: [max_hash_len]u8 = undefined;
if (expected_hash.len > hash_buf.len) return HasherError.InvalidEncoding;
var hash = hash_buf[0..expected_hash.len];
try kdf(allocator, hash, password, hash_result.salt.constSlice(), params);
if (!mem.eql(u8, hash, expected_hash)) return HasherError.PasswordVerificationFailed;
}
};
/// Hash and verify passwords using the modular crypt format.
const CryptFormatHasher = struct {
const BinValue = crypt_format.BinValue;
const HashResult = crypt_format.HashResult(max_hash_len);
/// Length of a string returned by the create() function
pub const pwhash_str_length: usize = 101;
/// Return a non-deterministic hash of the password encoded into the modular crypt format
pub fn create(
allocator: *mem.Allocator,
password: []const u8,
params: Params,
buf: []u8,
) HasherError![]const u8 {
var salt_bin: [default_salt_len]u8 = undefined;
crypto.random.bytes(&salt_bin);
const salt = crypt_format.saltFromBin(salt_bin.len, salt_bin);
var hash: [default_hash_len]u8 = undefined;
try kdf(allocator, &hash, password, &salt, params);
return crypt_format.serialize(HashResult{
.ln = params.ln,
.r = params.r,
.p = params.p,
.salt = &salt,
.hash = try BinValue(max_hash_len).fromSlice(&hash),
}, buf);
}
/// Verify a password against a string in modular crypt format
pub fn verify(
allocator: *mem.Allocator,
str: []const u8,
password: []const u8,
) HasherError!void {
const hash_result = try crypt_format.deserialize(HashResult, str);
const params = Params{ .ln = hash_result.ln, .r = hash_result.r, .p = hash_result.p };
const expected_hash = hash_result.hash.constSlice();
var hash_buf: [max_hash_len]u8 = undefined;
if (expected_hash.len > hash_buf.len) return HasherError.InvalidEncoding;
var hash = hash_buf[0..expected_hash.len];
try kdf(allocator, hash, password, hash_result.salt, params);
if (!mem.eql(u8, hash, expected_hash)) return HasherError.PasswordVerificationFailed;
}
};
/// Options for hashing a password.
pub const HashOptions = struct {
allocator: ?*mem.Allocator,
params: Params,
encoding: pwhash.Encoding,
};
/// Compute a hash of a password using the scrypt key derivation function.
/// The function returns a string that includes all the parameters required for verification.
pub fn strHash(
password: []const u8,
options: HashOptions,
out: []u8,
) Error![]const u8 {
const allocator = options.allocator orelse return Error.AllocatorRequired;
switch (options.encoding) {
.phc => return PhcFormatHasher.create(allocator, password, options.params, out),
.crypt => return CryptFormatHasher.create(allocator, password, options.params, out),
}
}
/// Options for hash verification.
pub const VerifyOptions = struct {
allocator: ?*mem.Allocator,
};
/// Verify that a previously computed hash is valid for a given password.
pub fn strVerify(
str: []const u8,
password: []const u8,
options: VerifyOptions,
) Error!void {
const allocator = options.allocator orelse return Error.AllocatorRequired;
if (mem.startsWith(u8, str, crypt_format.prefix)) {
return CryptFormatHasher.verify(allocator, str, password);
} else {
return PhcFormatHasher.verify(allocator, str, password);
}
}
test "scrypt kdf" {
const password = "testpass";
const salt = "saltsalt";
var dk: [32]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 15, .r = 8, .p = 1 });
const hex = "1e0f97c3f6609024022fbe698da29c2fe53ef1087a8e396dc6d5d2a041e886de";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "scrypt kdf rfc 1" {
const password = "";
const salt = "";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 4, .r = 1, .p = 1 });
const hex = "77d6576238657b203b19ca42c18a0497f16b4844e3074ae8dfdffa3fede21442fcd0069ded0948f8326a753a0fc81f17e8d3e0fb2e0d3628cf35e20c38d18906";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "scrypt kdf rfc 2" {
const password = "password";
const salt = "NaCl";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 10, .r = 8, .p = 16 });
const hex = "fdbabe1c9d3472007856e7190d01e9fe7c6ad7cbc8237830e77376634b3731622eaf30d92e22a3886ff109279d9830dac727afb94a83ee6d8360cbdfa2cc0640";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "scrypt kdf rfc 3" {
const password = "pleaseletmein";
const salt = "SodiumChloride";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 14, .r = 8, .p = 1 });
const hex = "7023bdcb3afd7348461c06cd81fd38ebfda8fbba904f8e3ea9b543f6545da1f2d5432955613f0fcf62d49705242a9af9e61e85dc0d651e40dfcf017b45575887";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "scrypt kdf rfc 4" {
// skip slow test
if (true) {
return error.SkipZigTest;
}
const password = "pleaseletmein";
const salt = "SodiumChloride";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 20, .r = 8, .p = 1 });
const hex = "2101cb9b6a511aaeaddbbe09cf70f881ec568d574a2ffd4dabe5ee9820adaa478e56fd8f4ba5d09ffa1c6d927c40f4c337304049e8a952fbcbf45c6fa77a41a4";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "scrypt password hashing (crypt format)" {
const str = "$7$A6....1....TrXs5Zk6s8sWHpQgWDIXTR8kUU3s6Jc3s.DtdS8M2i4$a4ik5hGDN7foMuHOW.cp.CtX01UyCeO0.JAG.AHPpx5";
const password = "Y0!?iQa9M%5ekffW(`";
try CryptFormatHasher.verify(std.testing.allocator, str, password);
const params = Params.interactive;
var buf: [CryptFormatHasher.pwhash_str_length]u8 = undefined;
const str2 = try CryptFormatHasher.create(std.testing.allocator, password, params, &buf);
try CryptFormatHasher.verify(std.testing.allocator, str2, password);
}
test "scrypt strHash and strVerify" {
const alloc = std.testing.allocator;
const password = "testpass";
const verify_options = VerifyOptions{ .allocator = alloc };
var buf: [128]u8 = undefined;
const s = try strHash(
password,
HashOptions{ .allocator = alloc, .params = Params.interactive, .encoding = .crypt },
&buf,
);
try strVerify(s, password, verify_options);
const s1 = try strHash(
password,
HashOptions{ .allocator = alloc, .params = Params.interactive, .encoding = .phc },
&buf,
);
try strVerify(s1, password, verify_options);
}
test "scrypt unix-scrypt" {
const alloc = std.testing.allocator;
// https://gitlab.com/jas/scrypt-unix-crypt/blob/master/unix-scrypt.txt
{
const str = "$7$C6..../....SodiumChloride$kBGj9fHznVYFQMEn/qDCfrDevf9YDtcDdKvEqHJLV8D";
const password = "pleaseletmein";
try strVerify(str, password, .{ .allocator = alloc });
}
// one of the libsodium test vectors
{
const str = "$7$B6....1....75gBMAGwfFWZqBdyF3WdTQnWdUsuTiWjG1fF9c1jiSD$tc8RoB3.Em3/zNgMLWo2u00oGIoTyJv4fl3Fl8Tix72";
const password = "^T5H$JYt39n%K*j:W]!1s?vg!:jGi]Ax?..l7[p0v:1jHTpla9;]bUN;?bWyCbtqg nrDFal+Jxl3,2`#^tFSu%v_+7iYse8-cCkNf!tD=KrW)";
try strVerify(str, password, .{ .allocator = alloc });
}
}
test "scrypt crypt format" {
const str = "$7$C6..../....SodiumChloride$kBGj9fHznVYFQMEn/qDCfrDevf9YDtcDdKvEqHJLV8D";
const params = try crypt_format.deserialize(crypt_format.HashResult(32), str);
var buf: [str.len]u8 = undefined;
const s1 = try crypt_format.serialize(params, &buf);
try std.testing.expectEqualStrings(s1, str);
}