change semantics of @memcpy and @memset

Now they use slices or array pointers with any element type instead of
requiring byte pointers.

This is a breaking enhancement to the language.

The safety check for overlapping pointers will be implemented in a
future commit.

closes #14040
This commit is contained in:
Andrew Kelley 2023-04-13 21:44:40 -07:00
parent 8d88dcdc61
commit a5c910adb6
33 changed files with 220 additions and 279 deletions

View file

@ -8681,40 +8681,28 @@ test "integer cast panic" {
{#header_close#}
{#header_open|@memcpy#}
<pre>{#syntax#}@memcpy(noalias dest: [*]u8, noalias source: [*]const u8, byte_count: usize) void{#endsyntax#}</pre>
<p>
This function copies bytes from one region of memory to another. {#syntax#}dest{#endsyntax#} and
{#syntax#}source{#endsyntax#} are both pointers and must not overlap.
</p>
<p>
This function is a low level intrinsic with no safety mechanisms. Most code
should not use this function, instead using something like this:
</p>
<pre>{#syntax#}for (dest, source[0..byte_count]) |*d, s| d.* = s;{#endsyntax#}</pre>
<p>
The optimizer is intelligent enough to turn the above snippet into a memcpy.
</p>
<p>There is also a standard library function for this:</p>
<pre>{#syntax#}const mem = @import("std").mem;
mem.copy(u8, dest[0..byte_count], source[0..byte_count]);{#endsyntax#}</pre>
<pre>{#syntax#}@memcpy(noalias dest, noalias source) void{#endsyntax#}</pre>
<p>This function copies bytes from one region of memory to another.</p>
<p>{#syntax#}dest{#endsyntax#} must be a mutable slice, or a mutable pointer to an array.
It may have any alignment, and it may have any element type.</p>
<p>{#syntax#}source{#endsyntax#} must be an array, pointer, or a slice
with the same element type as {#syntax#}dest{#endsyntax#}. It may have
any alignment. Only {#syntax#}const{#endsyntax#} access is required. It
is sliced from 0 to the same length as
{#syntax#}dest{#endsyntax#}, triggering the same set of safety checks and
possible compile errors as
{#syntax#}source[0..dest.len]{#endsyntax#}.</p>
<p>It is illegal for {#syntax#}dest{#endsyntax#} and
{#syntax#}source[0..dest.len]{#endsyntax#} to overlap. If safety
checks are enabled, there will be a runtime check for such overlapping.</p>
{#header_close#}
{#header_open|@memset#}
<pre>{#syntax#}@memset(dest: [*]u8, c: u8, byte_count: usize) void{#endsyntax#}</pre>
<p>
This function sets a region of memory to {#syntax#}c{#endsyntax#}. {#syntax#}dest{#endsyntax#} is a pointer.
</p>
<p>
This function is a low level intrinsic with no safety mechanisms. Most
code should not use this function, instead using something like this:
</p>
<pre>{#syntax#}for (dest[0..byte_count]) |*b| b.* = c;{#endsyntax#}</pre>
<p>
The optimizer is intelligent enough to turn the above snippet into a memset.
</p>
<p>There is also a standard library function for this:</p>
<pre>{#syntax#}const mem = @import("std").mem;
mem.set(u8, dest, c);{#endsyntax#}</pre>
<pre>{#syntax#}@memset(dest, elem) void{#endsyntax#}</pre>
<p>This function sets all the elements of a memory region to {#syntax#}elem{#endsyntax#}.</p>
<p>{#syntax#}dest{#endsyntax#} must be a mutable slice or a mutable pointer to an array.
It may have any alignment, and it may have any element type.</p>
<p>{#syntax#}elem{#endsyntax#} is coerced to the element type of {#syntax#}dest{#endsyntax#}.</p>
{#header_close#}
{#header_open|@min#}

View file

@ -121,22 +121,22 @@ fn __atomic_load(size: u32, src: [*]u8, dest: [*]u8, model: i32) callconv(.C) vo
_ = model;
var sl = spinlocks.get(@ptrToInt(src));
defer sl.release();
@memcpy(dest, src, size);
@memcpy(dest[0..size], src);
}
fn __atomic_store(size: u32, dest: [*]u8, src: [*]u8, model: i32) callconv(.C) void {
_ = model;
var sl = spinlocks.get(@ptrToInt(dest));
defer sl.release();
@memcpy(dest, src, size);
@memcpy(dest[0..size], src);
}
fn __atomic_exchange(size: u32, ptr: [*]u8, val: [*]u8, old: [*]u8, model: i32) callconv(.C) void {
_ = model;
var sl = spinlocks.get(@ptrToInt(ptr));
defer sl.release();
@memcpy(old, ptr, size);
@memcpy(ptr, val, size);
@memcpy(old[0..size], ptr);
@memcpy(ptr[0..size], val);
}
fn __atomic_compare_exchange(
@ -155,10 +155,10 @@ fn __atomic_compare_exchange(
if (expected[i] != b) break;
} else {
// The two objects, ptr and expected, are equal
@memcpy(ptr, desired, size);
@memcpy(ptr[0..size], desired);
return 1;
}
@memcpy(expected, ptr, size);
@memcpy(expected[0..size], ptr);
return 0;
}

View file

@ -139,10 +139,10 @@ const ObjectArray = struct {
if (control.default_value) |value| {
// default value: copy the content to newly allocated object.
@memcpy(data, @ptrCast([*]const u8, value), size);
@memcpy(data[0..size], @ptrCast([*]const u8, value));
} else {
// no default: return zeroed memory.
@memset(data, 0, size);
@memset(data[0..size], 0);
}
self.slots[index] = @ptrCast(*anyopaque, data);

View file

@ -1893,7 +1893,7 @@ const IndexHeader = struct {
const index_size = hash_map.capacityIndexSize(new_bit_index);
const nbytes = @sizeOf(IndexHeader) + index_size * len;
const bytes = try allocator.alignedAlloc(u8, @alignOf(IndexHeader), nbytes);
@memset(bytes.ptr + @sizeOf(IndexHeader), 0xff, bytes.len - @sizeOf(IndexHeader));
@memset(bytes[@sizeOf(IndexHeader)..], 0xff);
const result = @ptrCast(*IndexHeader, bytes.ptr);
result.* = .{
.bit_index = new_bit_index,
@ -1914,7 +1914,7 @@ const IndexHeader = struct {
const index_size = hash_map.capacityIndexSize(header.bit_index);
const ptr = @ptrCast([*]align(@alignOf(IndexHeader)) u8, header);
const nbytes = @sizeOf(IndexHeader) + header.length() * index_size;
@memset(ptr + @sizeOf(IndexHeader), 0xff, nbytes - @sizeOf(IndexHeader));
@memset(ptr[@sizeOf(IndexHeader)..nbytes], 0xff);
}
// Verify that the header has sufficient alignment to produce aligned arrays.

View file

@ -121,7 +121,7 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
mem.copy(T, new_memory, self.items);
@memset(@ptrCast([*]u8, self.items.ptr), undefined, self.items.len * @sizeOf(T));
@memset(self.items, undefined);
self.clearAndFree();
return new_memory;
}
@ -281,11 +281,7 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(
@ptrCast([*]align(@alignOf(T)) u8, self.items.ptr + old_len),
@ptrCast([*]const u8, items.ptr),
items.len * @sizeOf(T),
);
@memcpy(self.items[old_len..][0..items.len], items);
}
pub const Writer = if (T != u8)
@ -601,7 +597,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
mem.copy(T, new_memory, self.items);
@memset(@ptrCast([*]u8, self.items.ptr), undefined, self.items.len * @sizeOf(T));
@memset(self.items, undefined);
self.clearAndFree(allocator);
return new_memory;
}
@ -740,11 +736,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(
@ptrCast([*]align(@alignOf(T)) u8, self.items.ptr + old_len),
@ptrCast([*]const u8, items.ptr),
items.len * @sizeOf(T),
);
@memcpy(self.items[old_len..][0..items.len], items);
}
pub const WriterContext = struct {

View file

@ -3670,7 +3670,7 @@ pub const MachTask = extern struct {
else => |err| return unexpectedKernError(err),
}
@memcpy(out_buf[0..].ptr, @intToPtr([*]const u8, vm_memory), curr_bytes_read);
@memcpy(out_buf[0..curr_bytes_read], @intToPtr([*]const u8, vm_memory));
_ = vm_deallocate(mach_task_self(), vm_memory, curr_bytes_read);
out_buf = out_buf[curr_bytes_read..];

View file

@ -91,7 +91,7 @@ fn AesGcm(comptime Aes: anytype) type {
acc |= (computed_tag[p] ^ tag[p]);
}
if (acc != 0) {
@memset(m.ptr, undefined, m.len);
@memset(m, undefined);
return error.AuthenticationFailed;
}

View file

@ -531,7 +531,7 @@ pub fn init(stream: anytype, ca_bundle: Certificate.Bundle, host: []const u8) In
const pub_key = subject.pubKey();
if (pub_key.len > main_cert_pub_key_buf.len)
return error.CertificatePublicKeyInvalid;
@memcpy(&main_cert_pub_key_buf, pub_key.ptr, pub_key.len);
@memcpy(main_cert_pub_key_buf[0..pub_key.len], pub_key);
main_cert_pub_key_len = @intCast(@TypeOf(main_cert_pub_key_len), pub_key.len);
} else {
try prev_cert.verify(subject, now_sec);

View file

@ -135,11 +135,11 @@ pub fn timingSafeSub(comptime T: type, a: []const T, b: []const T, result: []T,
/// Sets a slice to zeroes.
/// Prevents the store from being optimized out.
pub fn secureZero(comptime T: type, s: []T) void {
// NOTE: We do not use a volatile slice cast here since LLVM cannot
// see that it can be replaced by a memset.
// TODO: implement `@memset` for non-byte-sized element type in the llvm backend
//@memset(@as([]volatile T, s), 0);
const ptr = @ptrCast([*]volatile u8, s.ptr);
const length = s.len * @sizeOf(T);
@memset(ptr, 0, length);
@memset(ptr[0..length], 0);
}
test "crypto.utils.timingSafeEql" {

View file

@ -104,7 +104,7 @@ pub fn LinearFifo(
}
{ // set unused area to undefined
const unused = mem.sliceAsBytes(self.buf[self.count..]);
@memset(unused.ptr, undefined, unused.len);
@memset(unused, undefined);
}
}
@ -182,12 +182,12 @@ pub fn LinearFifo(
const slice = self.readableSliceMut(0);
if (slice.len >= count) {
const unused = mem.sliceAsBytes(slice[0..count]);
@memset(unused.ptr, undefined, unused.len);
@memset(unused, undefined);
} else {
const unused = mem.sliceAsBytes(slice[0..]);
@memset(unused.ptr, undefined, unused.len);
@memset(unused, undefined);
const unused2 = mem.sliceAsBytes(self.readableSliceMut(slice.len)[0 .. count - slice.len]);
@memset(unused2.ptr, undefined, unused2.len);
@memset(unused2, undefined);
}
}
if (autoalign and self.count == count) {

View file

@ -115,7 +115,7 @@ pub const Murmur2_64 = struct {
const offset = len - rest;
if (rest > 0) {
var k1: u64 = 0;
@memcpy(@ptrCast([*]u8, &k1), @ptrCast([*]const u8, &str[@intCast(usize, offset)]), @intCast(usize, rest));
@memcpy(@ptrCast([*]u8, &k1)[0..@intCast(usize, rest)], @ptrCast([*]const u8, &str[@intCast(usize, offset)]));
if (native_endian == .Big)
k1 = @byteSwap(k1);
h1 ^= k1;
@ -282,13 +282,8 @@ pub const Murmur3_32 = struct {
fn SMHasherTest(comptime hash_fn: anytype, comptime hashbits: u32) u32 {
const hashbytes = hashbits / 8;
var key: [256]u8 = undefined;
var hashes: [hashbytes * 256]u8 = undefined;
var final: [hashbytes]u8 = undefined;
@memset(@ptrCast([*]u8, &key[0]), 0, @sizeOf(@TypeOf(key)));
@memset(@ptrCast([*]u8, &hashes[0]), 0, @sizeOf(@TypeOf(hashes)));
@memset(@ptrCast([*]u8, &final[0]), 0, @sizeOf(@TypeOf(final)));
var key: [256]u8 = [1]u8{0} ** 256;
var hashes: [hashbytes * 256]u8 = [1]u8{0} ** (hashbytes * 256);
var i: u32 = 0;
while (i < 256) : (i += 1) {
@ -297,7 +292,7 @@ fn SMHasherTest(comptime hash_fn: anytype, comptime hashbits: u32) u32 {
var h = hash_fn(key[0..i], 256 - i);
if (native_endian == .Big)
h = @byteSwap(h);
@memcpy(@ptrCast([*]u8, &hashes[i * hashbytes]), @ptrCast([*]u8, &h), hashbytes);
@memcpy(hashes[i * hashbytes..][0..hashbytes], @ptrCast([*]u8, &h));
}
return @truncate(u32, hash_fn(&hashes, 0));

View file

@ -1449,7 +1449,7 @@ pub fn HashMapUnmanaged(
}
fn initMetadatas(self: *Self) void {
@memset(@ptrCast([*]u8, self.metadata.?), 0, @sizeOf(Metadata) * self.capacity());
@memset(@ptrCast([*]u8, self.metadata.?)[0..@sizeOf(Metadata) * self.capacity()], 0);
}
// This counts the number of occupied slots (not counting tombstones), which is

View file

@ -759,7 +759,7 @@ pub fn GeneralPurposeAllocator(comptime config: Config) type {
const new_size_class = math.ceilPowerOfTwoAssert(usize, new_aligned_size);
if (new_size_class <= size_class) {
if (old_mem.len > new_size) {
@memset(old_mem.ptr + new_size, undefined, old_mem.len - new_size);
@memset(old_mem[new_size..], undefined);
}
if (config.verbose_log) {
log.info("small resize {d} bytes at {*} to {d}", .{
@ -911,7 +911,7 @@ pub fn GeneralPurposeAllocator(comptime config: Config) type {
self.empty_buckets = bucket;
}
} else {
@memset(old_mem.ptr, undefined, old_mem.len);
@memset(old_mem, undefined);
}
if (config.safety) {
assert(self.small_allocations.remove(@ptrToInt(old_mem.ptr)));
@ -1011,7 +1011,7 @@ pub fn GeneralPurposeAllocator(comptime config: Config) type {
};
self.buckets[bucket_index] = ptr;
// Set the used bits to all zeroes
@memset(@as(*[1]u8, ptr.usedBits(0)), 0, usedBitsCount(size_class));
@memset(@as([*]u8, @as(*[1]u8, ptr.usedBits(0)))[0..usedBitsCount(size_class)], 0);
return ptr;
}
};
@ -1412,3 +1412,4 @@ test "bug 9995 fix, large allocs count requested size not backing size" {
buf = try allocator.realloc(buf, 2);
try std.testing.expect(gpa.total_requested_bytes == 2);
}

View file

@ -2756,7 +2756,7 @@ test "big int conversion read twos complement with padding" {
var buffer1 = try testing.allocator.alloc(u8, 16);
defer testing.allocator.free(buffer1);
@memset(buffer1.ptr, 0xaa, buffer1.len);
@memset(buffer1, 0xaa);
// writeTwosComplement:
// (1) should not write beyond buffer[0..abi_size]
@ -2773,7 +2773,7 @@ test "big int conversion read twos complement with padding" {
a.toConst().writeTwosComplement(buffer1[0..16], .Big);
try testing.expect(std.mem.eql(u8, buffer1, &[_]u8{ 0x0, 0x0, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd }));
@memset(buffer1.ptr, 0xaa, buffer1.len);
@memset(buffer1, 0xaa);
try a.set(-0x01_02030405_06070809_0a0b0c0d);
bit_count = 12 * 8 + 2;
@ -2794,7 +2794,7 @@ test "big int write twos complement +/- zero" {
var buffer1 = try testing.allocator.alloc(u8, 16);
defer testing.allocator.free(buffer1);
@memset(buffer1.ptr, 0xaa, buffer1.len);
@memset(buffer1, 0xaa);
// Test zero
@ -2807,7 +2807,7 @@ test "big int write twos complement +/- zero" {
m.toConst().writeTwosComplement(buffer1[0..16], .Big);
try testing.expect(std.mem.eql(u8, buffer1, &(([_]u8{0} ** 16))));
@memset(buffer1.ptr, 0xaa, buffer1.len);
@memset(buffer1, 0xaa);
m.positive = false;
// Test negative zero

View file

@ -215,7 +215,7 @@ pub fn allocAdvancedWithRetAddr(
const byte_count = math.mul(usize, @sizeOf(T), n) catch return Error.OutOfMemory;
const byte_ptr = self.rawAlloc(byte_count, log2a(a), return_address) orelse return Error.OutOfMemory;
// TODO: https://github.com/ziglang/zig/issues/4298
@memset(byte_ptr, undefined, byte_count);
@memset(byte_ptr[0..byte_count], undefined);
const byte_slice = byte_ptr[0..byte_count];
return mem.bytesAsSlice(T, @alignCast(a, byte_slice));
}
@ -282,9 +282,9 @@ pub fn reallocAdvanced(
const new_mem = self.rawAlloc(byte_count, log2a(Slice.alignment), return_address) orelse
return error.OutOfMemory;
@memcpy(new_mem, old_byte_slice.ptr, @min(byte_count, old_byte_slice.len));
@memcpy(new_mem[0..@min(byte_count, old_byte_slice.len)], old_byte_slice);
// TODO https://github.com/ziglang/zig/issues/4298
@memset(old_byte_slice.ptr, undefined, old_byte_slice.len);
@memset(old_byte_slice, undefined);
self.rawFree(old_byte_slice, log2a(Slice.alignment), return_address);
return mem.bytesAsSlice(T, @alignCast(Slice.alignment, new_mem[0..byte_count]));
@ -299,7 +299,7 @@ pub fn free(self: Allocator, memory: anytype) void {
if (bytes_len == 0) return;
const non_const_ptr = @constCast(bytes.ptr);
// TODO: https://github.com/ziglang/zig/issues/4298
@memset(non_const_ptr, undefined, bytes_len);
@memset(non_const_ptr[0..bytes_len], undefined);
self.rawFree(non_const_ptr[0..bytes_len], log2a(Slice.alignment), @returnAddress());
}

View file

@ -360,11 +360,10 @@ pub fn MultiArrayList(comptime T: type) type {
if (@sizeOf(field_info.type) != 0) {
const field = @intToEnum(Field, i);
const dest_slice = self_slice.items(field)[new_len..];
const byte_count = dest_slice.len * @sizeOf(field_info.type);
// We use memset here for more efficient codegen in safety-checked,
// valgrind-enabled builds. Otherwise the valgrind client request
// will be repeated for every element.
@memset(@ptrCast([*]u8, dest_slice.ptr), undefined, byte_count);
@memset(dest_slice, undefined);
}
}
self.len = new_len;

View file

@ -1020,7 +1020,7 @@ fn linuxLookupName(
for (addrs.items, 0..) |*addr, i| {
var key: i32 = 0;
var sa6: os.sockaddr.in6 = undefined;
@memset(@ptrCast([*]u8, &sa6), 0, @sizeOf(os.sockaddr.in6));
@memset(@ptrCast([*]u8, &sa6)[0..@sizeOf(os.sockaddr.in6)], 0);
var da6 = os.sockaddr.in6{
.family = os.AF.INET6,
.scope_id = addr.addr.in6.sa.scope_id,
@ -1029,7 +1029,7 @@ fn linuxLookupName(
.addr = [1]u8{0} ** 16,
};
var sa4: os.sockaddr.in = undefined;
@memset(@ptrCast([*]u8, &sa4), 0, @sizeOf(os.sockaddr.in));
@memset(@ptrCast([*]u8, &sa4)[0..@sizeOf(os.sockaddr.in)], 0);
var da4 = os.sockaddr.in{
.family = os.AF.INET,
.port = 65535,
@ -1577,7 +1577,7 @@ fn resMSendRc(
// Get local address and open/bind a socket
var sa: Address = undefined;
@memset(@ptrCast([*]u8, &sa), 0, @sizeOf(Address));
@memset(@ptrCast([*]u8, &sa)[0..@sizeOf(Address)], 0);
sa.any.family = family;
try os.bind(fd, &sa.any, sl);

View file

@ -5217,7 +5217,7 @@ pub fn getFdPath(fd: fd_t, out_buffer: *[MAX_PATH_BYTES]u8) RealPathError![]u8 {
.macos, .ios, .watchos, .tvos => {
// On macOS, we can use F.GETPATH fcntl command to query the OS for
// the path to the file descriptor.
@memset(out_buffer, 0, MAX_PATH_BYTES);
@memset(out_buffer[0..MAX_PATH_BYTES], 0);
switch (errno(system.fcntl(fd, F.GETPATH, out_buffer))) {
.SUCCESS => {},
.BADF => return error.FileNotFound,
@ -5308,7 +5308,7 @@ pub fn getFdPath(fd: fd_t, out_buffer: *[MAX_PATH_BYTES]u8) RealPathError![]u8 {
if (comptime builtin.os.version_range.semver.max.order(.{ .major = 6, .minor = 0 }) == .lt) {
@compileError("querying for canonical path of a handle is unsupported on this host");
}
@memset(out_buffer, 0, MAX_PATH_BYTES);
@memset(out_buffer[0..MAX_PATH_BYTES], 0);
switch (errno(system.fcntl(fd, F.GETPATH, out_buffer))) {
.SUCCESS => {},
.BADF => return error.FileNotFound,
@ -5322,7 +5322,7 @@ pub fn getFdPath(fd: fd_t, out_buffer: *[MAX_PATH_BYTES]u8) RealPathError![]u8 {
if (comptime builtin.os.version_range.semver.max.order(.{ .major = 10, .minor = 0 }) == .lt) {
@compileError("querying for canonical path of a handle is unsupported on this host");
}
@memset(out_buffer, 0, MAX_PATH_BYTES);
@memset(out_buffer[0..MAX_PATH_BYTES], 0);
switch (errno(system.fcntl(fd, F.GETPATH, out_buffer))) {
.SUCCESS => {},
.ACCES => return error.AccessDenied,
@ -5720,7 +5720,7 @@ pub fn res_mkquery(
// Construct query template - ID will be filled later
var q: [280]u8 = undefined;
@memset(&q, 0, n);
@memset(q[0..n], 0);
q[2] = @as(u8, op) * 8 + 1;
q[5] = 1;
mem.copy(u8, q[13..], name);

View file

@ -1184,7 +1184,7 @@ pub fn sigaction(sig: u6, noalias act: ?*const Sigaction, noalias oact: ?*Sigact
.mask = undefined,
.restorer = @ptrCast(k_sigaction_funcs.restorer, restorer_fn),
};
@memcpy(@ptrCast([*]u8, &ksa.mask), @ptrCast([*]const u8, &new.mask), mask_size);
@memcpy(@ptrCast([*]u8, &ksa.mask)[0..mask_size], @ptrCast([*]const u8, &new.mask));
}
const ksa_arg = if (act != null) @ptrToInt(&ksa) else 0;
@ -1200,7 +1200,7 @@ pub fn sigaction(sig: u6, noalias act: ?*const Sigaction, noalias oact: ?*Sigact
if (oact) |old| {
old.handler.handler = oldksa.handler;
old.flags = @truncate(c_uint, oldksa.flags);
@memcpy(@ptrCast([*]u8, &old.mask), @ptrCast([*]const u8, &oldksa.mask), mask_size);
@memcpy(@ptrCast([*]u8, &old.mask)[0..mask_size], @ptrCast([*]const u8, &oldksa.mask));
}
return 0;
@ -1515,7 +1515,7 @@ pub fn sched_yield() usize {
pub fn sched_getaffinity(pid: pid_t, size: usize, set: *cpu_set_t) usize {
const rc = syscall3(.sched_getaffinity, @bitCast(usize, @as(isize, pid)), size, @ptrToInt(set));
if (@bitCast(isize, rc) < 0) return rc;
if (rc < size) @memset(@ptrCast([*]u8, set) + rc, 0, size - rc);
if (rc < size) @memset(@ptrCast([*]u8, set)[rc..size], 0);
return 0;
}

View file

@ -755,9 +755,9 @@ pub fn CreateSymbolicLink(
};
std.mem.copy(u8, buffer[0..], std.mem.asBytes(&symlink_data));
@memcpy(buffer[@sizeOf(SYMLINK_DATA)..], @ptrCast([*]const u8, target_path), target_path.len * 2);
@memcpy(buffer[@sizeOf(SYMLINK_DATA)..][0..target_path.len * 2], @ptrCast([*]const u8, target_path));
const paths_start = @sizeOf(SYMLINK_DATA) + target_path.len * 2;
@memcpy(buffer[paths_start..].ptr, @ptrCast([*]const u8, target_path), target_path.len * 2);
@memcpy(buffer[paths_start..][0..target_path.len * 2], @ptrCast([*]const u8, target_path));
_ = try DeviceIoControl(symlink_handle, FSCTL_SET_REPARSE_POINT, buffer[0..buf_len], null);
}
@ -1179,7 +1179,7 @@ pub fn GetFinalPathNameByHandle(
var input_struct = @ptrCast(*MOUNTMGR_MOUNT_POINT, &input_buf[0]);
input_struct.DeviceNameOffset = @sizeOf(MOUNTMGR_MOUNT_POINT);
input_struct.DeviceNameLength = @intCast(USHORT, volume_name_u16.len * 2);
@memcpy(input_buf[@sizeOf(MOUNTMGR_MOUNT_POINT)..], @ptrCast([*]const u8, volume_name_u16.ptr), volume_name_u16.len * 2);
@memcpy(input_buf[@sizeOf(MOUNTMGR_MOUNT_POINT)..][0..volume_name_u16.len * 2], @ptrCast([*]const u8, volume_name_u16.ptr));
DeviceIoControl(mgmt_handle, IOCTL_MOUNTMGR_QUERY_POINTS, &input_buf, &output_buf) catch |err| switch (err) {
error.AccessDenied => unreachable,

View file

@ -152,7 +152,7 @@ pub inline fn __builtin___memset_chk(
pub inline fn __builtin_memset(dst: ?*anyopaque, val: c_int, len: usize) ?*anyopaque {
const dst_cast = @ptrCast([*c]u8, dst);
@memset(dst_cast, @bitCast(u8, @truncate(i8, val)), len);
@memset(dst_cast[0..len], @bitCast(u8, @truncate(i8, val)));
return dst;
}
@ -174,7 +174,7 @@ pub inline fn __builtin_memcpy(
const dst_cast = @ptrCast([*c]u8, dst);
const src_cast = @ptrCast([*c]const u8, src);
@memcpy(dst_cast, src_cast, len);
@memcpy(dst_cast[0..len], src_cast);
return dst;
}

View file

@ -632,17 +632,20 @@ pub const Inst = struct {
/// Uses the `pl_op` field with `pred` as operand, and payload `Bin`.
select,
/// Given dest ptr, value, and len, set all elements at dest to value.
/// Given dest pointer and value, set all elements at dest to value.
/// Dest pointer is either a slice or a pointer to array.
/// The element type may be any type, and the slice may have any alignment.
/// Result type is always void.
/// Uses the `pl_op` field. Operand is the dest ptr. Payload is `Bin`. `lhs` is the
/// value, `rhs` is the length.
/// The element type may be any type, not just u8.
/// Uses the `bin_op` field. LHS is the dest slice. RHS is the element value.
memset,
/// Given dest ptr, src ptr, and len, copy len elements from src to dest.
/// Given dest pointer and source pointer, copy elements from source to dest.
/// Dest pointer is either a slice or a pointer to array.
/// The dest element type may be any type.
/// Source pointer must have same element type as dest element type.
/// Dest slice may have any alignment; source pointer may have any alignment.
/// The two memory regions must not overlap.
/// Result type is always void.
/// Uses the `pl_op` field. Operand is the dest ptr. Payload is `Bin`. `lhs` is the
/// src ptr, `rhs` is the length.
/// The element type may be any type, not just u8.
/// Uses the `bin_op` field. LHS is the dest slice. RHS is the source pointer.
memcpy,
/// Uses the `ty_pl` field with payload `Cmpxchg`.

View file

@ -8453,18 +8453,16 @@ fn builtinCall(
return rvalue(gz, ri, result, node);
},
.memcpy => {
_ = try gz.addPlNode(.memcpy, node, Zir.Inst.Memcpy{
.dest = try expr(gz, scope, .{ .rl = .{ .coerced_ty = .manyptr_u8_type } }, params[0]),
.source = try expr(gz, scope, .{ .rl = .{ .coerced_ty = .manyptr_const_u8_type } }, params[1]),
.byte_count = try expr(gz, scope, .{ .rl = .{ .coerced_ty = .usize_type } }, params[2]),
_ = try gz.addPlNode(.memcpy, node, Zir.Inst.Bin{
.lhs = try expr(gz, scope, .{ .rl = .none }, params[0]),
.rhs = try expr(gz, scope, .{ .rl = .ref }, params[1]),
});
return rvalue(gz, ri, .void_value, node);
},
.memset => {
_ = try gz.addPlNode(.memset, node, Zir.Inst.Memset{
.dest = try expr(gz, scope, .{ .rl = .{ .coerced_ty = .manyptr_u8_type } }, params[0]),
.byte = try expr(gz, scope, .{ .rl = .{ .coerced_ty = .u8_type } }, params[1]),
.byte_count = try expr(gz, scope, .{ .rl = .{ .coerced_ty = .usize_type } }, params[2]),
_ = try gz.addPlNode(.memset, node, Zir.Inst.Bin{
.lhs = try expr(gz, scope, .{ .rl = .none }, params[0]),
.rhs = try expr(gz, scope, .{ .rl = .none }, params[1]),
});
return rvalue(gz, ri, .void_value, node);
},

View file

@ -615,14 +615,14 @@ pub const list = list: {
"@memcpy",
.{
.tag = .memcpy,
.param_count = 3,
.param_count = 2,
},
},
.{
"@memset",
.{
.tag = .memset,
.param_count = 3,
.param_count = 2,
},
},
.{

View file

@ -304,6 +304,8 @@ pub fn categorizeOperand(
.atomic_store_release,
.atomic_store_seq_cst,
.set_union_tag,
.memset,
.memcpy,
=> {
const o = air_datas[inst].bin_op;
if (o.lhs == operand_ref) return matchOperandSmallIndex(l, inst, 0, .write);
@ -597,16 +599,6 @@ pub fn categorizeOperand(
if (extra.operand == operand_ref) return matchOperandSmallIndex(l, inst, 1, .write);
return .write;
},
.memset,
.memcpy,
=> {
const pl_op = air_datas[inst].pl_op;
const extra = air.extraData(Air.Bin, pl_op.payload).data;
if (pl_op.operand == operand_ref) return matchOperandSmallIndex(l, inst, 0, .write);
if (extra.lhs == operand_ref) return matchOperandSmallIndex(l, inst, 1, .write);
if (extra.rhs == operand_ref) return matchOperandSmallIndex(l, inst, 2, .write);
return .write;
},
.br => {
const br = air_datas[inst].br;
@ -987,6 +979,8 @@ fn analyzeInst(
.set_union_tag,
.min,
.max,
.memset,
.memcpy,
=> {
const o = inst_datas[inst].bin_op;
return analyzeOperands(a, pass, data, inst, .{ o.lhs, o.rhs, .none });
@ -1234,13 +1228,6 @@ fn analyzeInst(
const extra = a.air.extraData(Air.AtomicRmw, pl_op.payload).data;
return analyzeOperands(a, pass, data, inst, .{ pl_op.operand, extra.operand, .none });
},
.memset,
.memcpy,
=> {
const pl_op = inst_datas[inst].pl_op;
const extra = a.air.extraData(Air.Bin, pl_op.payload).data;
return analyzeOperands(a, pass, data, inst, .{ pl_op.operand, extra.lhs, extra.rhs });
},
.br => return analyzeInstBr(a, pass, data, inst),

View file

@ -9861,8 +9861,11 @@ fn zirSliceStart(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!
const extra = sema.code.extraData(Zir.Inst.SliceStart, inst_data.payload_index).data;
const array_ptr = try sema.resolveInst(extra.lhs);
const start = try sema.resolveInst(extra.start);
const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = inst_data.src_node };
const start_src: LazySrcLoc = .{ .node_offset_slice_start = inst_data.src_node };
const end_src: LazySrcLoc = .{ .node_offset_slice_end = inst_data.src_node };
return sema.analyzeSlice(block, src, array_ptr, start, .none, .none, .unneeded);
return sema.analyzeSlice(block, src, array_ptr, start, .none, .none, .unneeded, ptr_src, start_src, end_src);
}
fn zirSliceEnd(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
@ -9875,8 +9878,11 @@ fn zirSliceEnd(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Ai
const array_ptr = try sema.resolveInst(extra.lhs);
const start = try sema.resolveInst(extra.start);
const end = try sema.resolveInst(extra.end);
const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = inst_data.src_node };
const start_src: LazySrcLoc = .{ .node_offset_slice_start = inst_data.src_node };
const end_src: LazySrcLoc = .{ .node_offset_slice_end = inst_data.src_node };
return sema.analyzeSlice(block, src, array_ptr, start, end, .none, .unneeded);
return sema.analyzeSlice(block, src, array_ptr, start, end, .none, .unneeded, ptr_src, start_src, end_src);
}
fn zirSliceSentinel(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref {
@ -9891,8 +9897,11 @@ fn zirSliceSentinel(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileErr
const start = try sema.resolveInst(extra.start);
const end = try sema.resolveInst(extra.end);
const sentinel = try sema.resolveInst(extra.sentinel);
const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = inst_data.src_node };
const start_src: LazySrcLoc = .{ .node_offset_slice_start = inst_data.src_node };
const end_src: LazySrcLoc = .{ .node_offset_slice_end = inst_data.src_node };
return sema.analyzeSlice(block, src, array_ptr, start, end, sentinel, sentinel_src);
return sema.analyzeSlice(block, src, array_ptr, start, end, sentinel, sentinel_src, ptr_src, start_src, end_src);
}
fn zirSwitchCapture(
@ -20393,6 +20402,22 @@ fn checkPtrType(
return sema.fail(block, ty_src, "expected pointer type, found '{}'", .{ty.fmt(sema.mod)});
}
fn checkSliceOrArrayType(
sema: *Sema,
block: *Block,
ty_src: LazySrcLoc,
ty: Type,
) CompileError!void {
if (ty.zigTypeTag() == .Pointer) {
switch (ty.ptrSize()) {
.Slice => return,
.One => if (ty.childType().zigTypeTag() == .Array) return,
else => {},
}
}
return sema.fail(block, ty_src, "expected slice or array pointer; found '{}'", .{ty.fmt(sema.mod)});
}
fn checkVectorElemType(
sema: *Sema,
block: *Block,
@ -21750,88 +21775,64 @@ fn analyzeMinMax(
fn zirMemcpy(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
const extra = sema.code.extraData(Zir.Inst.Memcpy, inst_data.payload_index).data;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const src = inst_data.src();
const dest_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const src_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const len_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node };
const uncasted_dest_ptr = try sema.resolveInst(extra.dest);
const dest_ptr = try sema.resolveInst(extra.lhs);
const src_ptr_ptr = try sema.resolveInst(extra.rhs);
const dest_ptr_ty = sema.typeOf(dest_ptr);
try checkSliceOrArrayType(sema, block, dest_src, dest_ptr_ty);
// TODO AstGen's coerced_ty cannot handle volatile here
var dest_ptr_info = Type.initTag(.manyptr_u8).ptrInfo().data;
dest_ptr_info.@"volatile" = sema.typeOf(uncasted_dest_ptr).isVolatilePtr();
const dest_ptr_ty = try Type.ptr(sema.arena, sema.mod, dest_ptr_info);
const dest_ptr = try sema.coerce(block, dest_ptr_ty, uncasted_dest_ptr, dest_src);
const uncasted_src_ptr = try sema.resolveInst(extra.source);
var src_ptr_info = Type.initTag(.manyptr_const_u8).ptrInfo().data;
src_ptr_info.@"volatile" = sema.typeOf(uncasted_src_ptr).isVolatilePtr();
const src_ptr_ty = try Type.ptr(sema.arena, sema.mod, src_ptr_info);
const src_ptr = try sema.coerce(block, src_ptr_ty, uncasted_src_ptr, src_src);
const len = try sema.coerce(block, Type.usize, try sema.resolveInst(extra.byte_count), len_src);
const dest_len = try sema.fieldVal(block, dest_src, dest_ptr, "len", dest_src);
const src_ptr = try sema.analyzeSlice(block, src_src, src_ptr_ptr, .zero_usize, dest_len, .none, .unneeded, src_src, src_src, src_src);
const runtime_src = if (try sema.resolveDefinedValue(block, dest_src, dest_ptr)) |dest_ptr_val| rs: {
if (!dest_ptr_val.isComptimeMutablePtr()) break :rs dest_src;
if (try sema.resolveDefinedValue(block, src_src, src_ptr)) |src_ptr_val| {
if (!src_ptr_val.isComptimeMutablePtr()) break :rs src_src;
if (try sema.resolveDefinedValue(block, len_src, len)) |len_val| {
_ = len_val;
return sema.fail(block, src, "TODO: Sema.zirMemcpy at comptime", .{});
} else break :rs len_src;
return sema.fail(block, src, "TODO: @memcpy at comptime", .{});
} else break :rs src_src;
} else dest_src;
try sema.requireRuntimeBlock(block, src, runtime_src);
_ = try block.addInst(.{
.tag = .memcpy,
.data = .{ .pl_op = .{
.operand = dest_ptr,
.payload = try sema.addExtra(Air.Bin{
.lhs = src_ptr,
.rhs = len,
}),
.data = .{ .bin_op = .{
.lhs = dest_ptr,
.rhs = src_ptr,
} },
});
}
fn zirMemset(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void {
const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
const extra = sema.code.extraData(Zir.Inst.Memset, inst_data.payload_index).data;
const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data;
const src = inst_data.src();
const dest_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
const value_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
const len_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node };
const uncasted_dest_ptr = try sema.resolveInst(extra.dest);
const dest_ptr = try sema.resolveInst(extra.lhs);
const uncoerced_elem = try sema.resolveInst(extra.rhs);
const dest_ptr_ty = sema.typeOf(dest_ptr);
try checkSliceOrArrayType(sema, block, dest_src, dest_ptr_ty);
// TODO AstGen's coerced_ty cannot handle volatile here
var ptr_info = Type.initTag(.manyptr_u8).ptrInfo().data;
ptr_info.@"volatile" = sema.typeOf(uncasted_dest_ptr).isVolatilePtr();
const dest_ptr_ty = try Type.ptr(sema.arena, sema.mod, ptr_info);
const dest_ptr = try sema.coerce(block, dest_ptr_ty, uncasted_dest_ptr, dest_src);
const value = try sema.coerce(block, Type.u8, try sema.resolveInst(extra.byte), value_src);
const len = try sema.coerce(block, Type.usize, try sema.resolveInst(extra.byte_count), len_src);
const elem_ty = dest_ptr_ty.elemType2();
const elem = try sema.coerce(block, elem_ty, uncoerced_elem, value_src);
const runtime_src = if (try sema.resolveDefinedValue(block, dest_src, dest_ptr)) |ptr_val| rs: {
if (!ptr_val.isComptimeMutablePtr()) break :rs dest_src;
if (try sema.resolveDefinedValue(block, len_src, len)) |len_val| {
if (try sema.resolveMaybeUndefVal(value)) |val| {
_ = len_val;
_ = val;
return sema.fail(block, src, "TODO: Sema.zirMemset at comptime", .{});
if (try sema.resolveMaybeUndefVal(elem)) |elem_val| {
_ = elem_val;
return sema.fail(block, src, "TODO: @memset at comptime", .{});
} else break :rs value_src;
} else break :rs len_src;
} else dest_src;
try sema.requireRuntimeBlock(block, src, runtime_src);
_ = try block.addInst(.{
.tag = .memset,
.data = .{ .pl_op = .{
.operand = dest_ptr,
.payload = try sema.addExtra(Air.Bin{
.lhs = value,
.rhs = len,
}),
.data = .{ .bin_op = .{
.lhs = dest_ptr,
.rhs = elem,
} },
});
}
@ -28753,10 +28754,10 @@ fn analyzeSlice(
uncasted_end_opt: Air.Inst.Ref,
sentinel_opt: Air.Inst.Ref,
sentinel_src: LazySrcLoc,
ptr_src: LazySrcLoc,
start_src: LazySrcLoc,
end_src: LazySrcLoc,
) CompileError!Air.Inst.Ref {
const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = src.node_offset.x };
const start_src: LazySrcLoc = .{ .node_offset_slice_start = src.node_offset.x };
const end_src: LazySrcLoc = .{ .node_offset_slice_end = src.node_offset.x };
// Slice expressions can operate on a variable whose type is an array. This requires
// the slice operand to be a pointer. In the case of a non-array, it will be a double pointer.
const ptr_ptr_ty = sema.typeOf(ptr_ptr);

View file

@ -922,10 +922,10 @@ pub const Inst = struct {
/// Uses the `pl_node` union field with payload `FieldParentPtr`.
field_parent_ptr,
/// Implements the `@memcpy` builtin.
/// Uses the `pl_node` union field with payload `Memcpy`.
/// Uses the `pl_node` union field with payload `Bin`.
memcpy,
/// Implements the `@memset` builtin.
/// Uses the `pl_node` union field with payload `Memset`.
/// Uses the `pl_node` union field with payload `Bin`.
memset,
/// Implements the `@min` builtin.
/// Uses the `pl_node` union field with payload `Bin`
@ -3501,18 +3501,6 @@ pub const Inst = struct {
field_ptr: Ref,
};
pub const Memcpy = struct {
dest: Ref,
source: Ref,
byte_count: Ref,
};
pub const Memset = struct {
dest: Ref,
byte: Ref,
byte_count: Ref,
};
pub const Shuffle = struct {
elem_type: Ref,
a: Ref,

View file

@ -5776,6 +5776,36 @@ pub const FuncGen = struct {
return result;
}
fn sliceOrArrayPtr(fg: *FuncGen, ptr: *llvm.Value, ty: Type) *llvm.Value {
switch (ty.ptrSize()) {
.Slice => return fg.builder.buildExtractValue(ptr, 0, ""),
.One => return ptr,
.Many, .C => unreachable,
}
}
fn sliceOrArrayLenInBytes(fg: *FuncGen, ptr: *llvm.Value, ty: Type) *llvm.Value {
const target = fg.dg.module.getTarget();
const llvm_usize_ty = fg.context.intType(target.cpu.arch.ptrBitWidth());
switch (ty.ptrSize()) {
.Slice => {
const len = fg.builder.buildExtractValue(ptr, 1, "");
const elem_ty = ty.childType();
const abi_size = elem_ty.abiSize(target);
if (abi_size == 1) return len;
const abi_size_llvm_val = llvm_usize_ty.constInt(abi_size, .False);
return fg.builder.buildMul(len, abi_size_llvm_val, "");
},
.One => {
const array_ty = ty.childType();
const elem_ty = array_ty.childType();
const abi_size = elem_ty.abiSize(target);
return llvm_usize_ty.constInt(array_ty.arrayLen() * abi_size, .False);
},
.Many, .C => unreachable,
}
}
fn airSliceField(self: *FuncGen, inst: Air.Inst.Index, index: c_uint) !?*llvm.Value {
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand = try self.resolveInst(ty_op.operand);
@ -8374,18 +8404,24 @@ pub const FuncGen = struct {
}
fn airMemset(self: *FuncGen, inst: Air.Inst.Index) !?*llvm.Value {
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
const extra = self.air.extraData(Air.Bin, pl_op.payload).data;
const dest_ptr = try self.resolveInst(pl_op.operand);
const ptr_ty = self.air.typeOf(pl_op.operand);
const value = try self.resolveInst(extra.lhs);
const val_is_undef = if (self.air.value(extra.lhs)) |val| val.isUndefDeep() else false;
const len = try self.resolveInst(extra.rhs);
const u8_llvm_ty = self.context.intType(8);
const fill_char = if (val_is_undef) u8_llvm_ty.constInt(0xaa, .False) else value;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const dest_slice = try self.resolveInst(bin_op.lhs);
const ptr_ty = self.air.typeOf(bin_op.lhs);
const value = try self.resolveInst(bin_op.rhs);
const elem_ty = self.air.typeOf(bin_op.rhs);
const target = self.dg.module.getTarget();
const val_is_undef = if (self.air.value(bin_op.rhs)) |val| val.isUndefDeep() else false;
const len = self.sliceOrArrayLenInBytes(dest_slice, ptr_ty);
const dest_ptr = self.sliceOrArrayPtr(dest_slice, ptr_ty);
const u8_llvm_ty = self.context.intType(8);
const fill_byte = if (val_is_undef) u8_llvm_ty.constInt(0xaa, .False) else b: {
if (elem_ty.abiSize(target) != 1) {
return self.dg.todo("implement @memset for non-byte-sized element type", .{});
}
break :b self.builder.buildBitCast(value, u8_llvm_ty, "");
};
const dest_ptr_align = ptr_ty.ptrAlignment(target);
_ = self.builder.buildMemSet(dest_ptr, fill_char, len, dest_ptr_align, ptr_ty.isVolatilePtr());
_ = self.builder.buildMemSet(dest_ptr, fill_byte, len, dest_ptr_align, ptr_ty.isVolatilePtr());
if (val_is_undef and self.dg.module.comp.bin_file.options.valgrind) {
self.valgrindMarkUndef(dest_ptr, len);
@ -8394,13 +8430,14 @@ pub const FuncGen = struct {
}
fn airMemcpy(self: *FuncGen, inst: Air.Inst.Index) !?*llvm.Value {
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
const extra = self.air.extraData(Air.Bin, pl_op.payload).data;
const dest_ptr = try self.resolveInst(pl_op.operand);
const dest_ptr_ty = self.air.typeOf(pl_op.operand);
const src_ptr = try self.resolveInst(extra.lhs);
const src_ptr_ty = self.air.typeOf(extra.lhs);
const len = try self.resolveInst(extra.rhs);
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const dest_slice = try self.resolveInst(bin_op.lhs);
const dest_ptr_ty = self.air.typeOf(bin_op.lhs);
const src_slice = try self.resolveInst(bin_op.rhs);
const src_ptr_ty = self.air.typeOf(bin_op.rhs);
const src_ptr = self.sliceOrArrayPtr(src_slice, src_ptr_ty);
const len = self.sliceOrArrayLenInBytes(dest_slice, dest_ptr_ty);
const dest_ptr = self.sliceOrArrayPtr(dest_slice, dest_ptr_ty);
const is_volatile = src_ptr_ty.isVolatilePtr() or dest_ptr_ty.isVolatilePtr();
const target = self.dg.module.getTarget();
_ = self.builder.buildMemCpy(

View file

@ -169,6 +169,8 @@ const Writer = struct {
.cmp_gte_optimized,
.cmp_gt_optimized,
.cmp_neq_optimized,
.memcpy,
.memset,
=> try w.writeBinOp(s, inst),
.is_null,
@ -315,8 +317,6 @@ const Writer = struct {
.atomic_store_release => try w.writeAtomicStore(s, inst, .Release),
.atomic_store_seq_cst => try w.writeAtomicStore(s, inst, .SeqCst),
.atomic_rmw => try w.writeAtomicRmw(s, inst),
.memcpy => try w.writeMemcpy(s, inst),
.memset => try w.writeMemset(s, inst),
.field_parent_ptr => try w.writeFieldParentPtr(s, inst),
.wasm_memory_size => try w.writeWasmMemorySize(s, inst),
.wasm_memory_grow => try w.writeWasmMemoryGrow(s, inst),
@ -591,17 +591,6 @@ const Writer = struct {
try s.print(", {s}, {s}", .{ @tagName(extra.op()), @tagName(extra.ordering()) });
}
fn writeMemset(w: *Writer, s: anytype, inst: Air.Inst.Index) @TypeOf(s).Error!void {
const pl_op = w.air.instructions.items(.data)[inst].pl_op;
const extra = w.air.extraData(Air.Bin, pl_op.payload).data;
try w.writeOperand(s, inst, 0, pl_op.operand);
try s.writeAll(", ");
try w.writeOperand(s, inst, 1, extra.lhs);
try s.writeAll(", ");
try w.writeOperand(s, inst, 2, extra.rhs);
}
fn writeFieldParentPtr(w: *Writer, s: anytype, inst: Air.Inst.Index) @TypeOf(s).Error!void {
const ty_pl = w.air.instructions.items(.data)[inst].ty_pl;
const extra = w.air.extraData(Air.FieldParentPtr, ty_pl.payload).data;
@ -610,17 +599,6 @@ const Writer = struct {
try s.print(", {d}", .{extra.field_index});
}
fn writeMemcpy(w: *Writer, s: anytype, inst: Air.Inst.Index) @TypeOf(s).Error!void {
const pl_op = w.air.instructions.items(.data)[inst].pl_op;
const extra = w.air.extraData(Air.Bin, pl_op.payload).data;
try w.writeOperand(s, inst, 0, pl_op.operand);
try s.writeAll(", ");
try w.writeOperand(s, inst, 1, extra.lhs);
try s.writeAll(", ");
try w.writeOperand(s, inst, 2, extra.rhs);
}
fn writeConstant(w: *Writer, s: anytype, inst: Air.Inst.Index) @TypeOf(s).Error!void {
const ty_pl = w.air.instructions.items(.data)[inst].ty_pl;
const val = w.air.values[ty_pl.payload];

View file

@ -277,8 +277,6 @@ const Writer = struct {
.atomic_load => try self.writeAtomicLoad(stream, inst),
.atomic_store => try self.writeAtomicStore(stream, inst),
.atomic_rmw => try self.writeAtomicRmw(stream, inst),
.memcpy => try self.writeMemcpy(stream, inst),
.memset => try self.writeMemset(stream, inst),
.shuffle => try self.writeShuffle(stream, inst),
.mul_add => try self.writeMulAdd(stream, inst),
.field_parent_ptr => try self.writeFieldParentPtr(stream, inst),
@ -346,6 +344,8 @@ const Writer = struct {
.vector_type,
.max,
.min,
.memcpy,
.memset,
.elem_ptr_node,
.elem_val_node,
.elem_ptr,
@ -1000,32 +1000,6 @@ const Writer = struct {
try self.writeSrc(stream, inst_data.src());
}
fn writeMemcpy(self: *Writer, stream: anytype, inst: Zir.Inst.Index) !void {
const inst_data = self.code.instructions.items(.data)[inst].pl_node;
const extra = self.code.extraData(Zir.Inst.Memcpy, inst_data.payload_index).data;
try self.writeInstRef(stream, extra.dest);
try stream.writeAll(", ");
try self.writeInstRef(stream, extra.source);
try stream.writeAll(", ");
try self.writeInstRef(stream, extra.byte_count);
try stream.writeAll(") ");
try self.writeSrc(stream, inst_data.src());
}
fn writeMemset(self: *Writer, stream: anytype, inst: Zir.Inst.Index) !void {
const inst_data = self.code.instructions.items(.data)[inst].pl_node;
const extra = self.code.extraData(Zir.Inst.Memset, inst_data.payload_index).data;
try self.writeInstRef(stream, extra.dest);
try stream.writeAll(", ");
try self.writeInstRef(stream, extra.byte);
try stream.writeAll(", ");
try self.writeInstRef(stream, extra.byte_count);
try stream.writeAll(") ");
try self.writeSrc(stream, inst_data.src());
}
fn writeStructInitAnon(self: *Writer, stream: anytype, inst: Zir.Inst.Index) !void {
const inst_data = self.code.instructions.items(.data)[inst].pl_node;
const extra = self.code.extraData(Zir.Inst.StructInitAnon, inst_data.payload_index);

View file

@ -367,8 +367,8 @@ fn testMemcpyMemset() !void {
var foo: [20]u8 = undefined;
var bar: [20]u8 = undefined;
@memset(&foo, 'A', foo.len);
@memcpy(&bar, &foo, bar.len);
@memset(&foo, 'A');
@memcpy(&bar, &foo);
try expect(bar[0] == 'A');
try expect(bar[11] == 'A');

View file

@ -14,7 +14,7 @@ test "zero keys with @memset" {
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
@memset(@ptrCast([*]u8, &keys), 0, @sizeOf(@TypeOf(keys)));
@memset(@ptrCast([*]u8, &keys)[0..@sizeOf(@TypeOf(keys))], 0);
try expect(!keys.up);
try expect(!keys.down);
try expect(!keys.left);

View file

@ -91,7 +91,7 @@ test "structs" {
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
var foo: StructFoo = undefined;
@memset(@ptrCast([*]u8, &foo), 0, @sizeOf(StructFoo));
@memset(@ptrCast([*]u8, &foo)[0..@sizeOf(StructFoo)], 0);
foo.a += 1;
foo.b = foo.a == 1;
try testFoo(foo);
@ -498,7 +498,7 @@ test "packed struct fields are ordered from LSB to MSB" {
var all: u64 = 0x7765443322221111;
var bytes: [8]u8 align(@alignOf(Bitfields)) = undefined;
@memcpy(&bytes, @ptrCast([*]u8, &all), 8);
@memcpy(bytes[0..8], @ptrCast([*]u8, &all));
var bitfields = @ptrCast(*Bitfields, &bytes).*;
try expect(bitfields.f1 == 0x1111);