mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 13:54:21 +00:00
std: Add Priority Dequeue
This commit is contained in:
parent
b204ea0349
commit
a727a508cd
2 changed files with 880 additions and 0 deletions
879
lib/std/priority_dequeue.zig
Normal file
879
lib/std/priority_dequeue.zig
Normal file
|
|
@ -0,0 +1,879 @@
|
|||
const std = @import("std");
|
||||
const Allocator = std.mem.Allocator;
|
||||
const sort = std.sort;
|
||||
const assert = std.debug.assert;
|
||||
const warn = std.debug.warn;
|
||||
const testing = std.testing;
|
||||
const expect = testing.expect;
|
||||
const expectEqual = testing.expectEqual;
|
||||
const expectError = testing.expectError;
|
||||
|
||||
/// Priority Dequeue for storing generic data. Initialize with `init`.
|
||||
pub fn PriorityDequeue(comptime T: type) type {
|
||||
return struct {
|
||||
const Self = @This();
|
||||
|
||||
items: []T,
|
||||
len: usize,
|
||||
allocator: *Allocator,
|
||||
lessThanFn: fn (a: T, b: T) bool,
|
||||
|
||||
/// Initialize and return a new dequeue. Provide `lessThanFn`
|
||||
/// that returns `true` when its first argument should
|
||||
/// get min-popped before its second argument. For example,
|
||||
/// to make `popMin` return the minimum value, provide
|
||||
///
|
||||
/// `fn lessThanFn(a: T, b: T) bool { return a < b; }`
|
||||
pub fn init(allocator: *Allocator, lessThanFn: fn (T, T) bool) Self {
|
||||
return Self{
|
||||
.items = &[_]T{},
|
||||
.len = 0,
|
||||
.allocator = allocator,
|
||||
.lessThanFn = lessThanFn,
|
||||
};
|
||||
}
|
||||
|
||||
fn lessThan(self: Self, a: T, b: T) bool {
|
||||
return self.lessThanFn(a, b);
|
||||
}
|
||||
|
||||
fn greaterThan(self: Self, a: T, b: T) bool {
|
||||
return self.lessThanFn(b, a);
|
||||
}
|
||||
|
||||
/// Free memory used by the dequeue.
|
||||
pub fn deinit(self: Self) void {
|
||||
self.allocator.free(self.items);
|
||||
}
|
||||
|
||||
/// Insert a new element, maintaining priority.
|
||||
pub fn add(self: *Self, elem: T) !void {
|
||||
try ensureCapacity(self, self.len + 1);
|
||||
addUnchecked(self, elem);
|
||||
}
|
||||
|
||||
/// Add each element in `items` to the dequeue.
|
||||
pub fn addSlice(self: *Self, items: []const T) !void {
|
||||
try self.ensureCapacity(self.len + items.len);
|
||||
for (items) |e| {
|
||||
self.addUnchecked(e);
|
||||
}
|
||||
}
|
||||
|
||||
fn addUnchecked(self: *Self, elem: T) void {
|
||||
self.items[self.len] = elem;
|
||||
|
||||
if (self.len > 0) {
|
||||
const start = self.getStartForSiftUp(elem, self.len);
|
||||
self.siftUp(start);
|
||||
}
|
||||
|
||||
self.len += 1;
|
||||
}
|
||||
|
||||
fn isMinLayer(index: usize) bool {
|
||||
// In the min-max heap structure:
|
||||
// The first element is on a min layer;
|
||||
// next two are on a max layer;
|
||||
// next four are on a min layer, and so on.
|
||||
const leading_zeros = @clz(usize, index + 1);
|
||||
const highest_set_bit = 63 - leading_zeros;
|
||||
return (highest_set_bit & 1) == 0;
|
||||
}
|
||||
|
||||
fn nextIsMinLayer(self: Self) bool {
|
||||
return isMinLayer(self.len);
|
||||
}
|
||||
|
||||
const StartIndexAndLayer = struct {
|
||||
index: usize,
|
||||
min_layer: bool,
|
||||
};
|
||||
|
||||
fn getStartForSiftUp(self: Self, child: T, index: usize) StartIndexAndLayer {
|
||||
var child_index = index;
|
||||
var parent_index = parentIndex(child_index);
|
||||
const parent = self.items[parent_index];
|
||||
|
||||
const min_layer = self.nextIsMinLayer();
|
||||
if ((min_layer and self.greaterThan(child, parent)) or (!min_layer and self.lessThan(child, parent))) {
|
||||
// We must swap the item with it's parent if it is on the "wrong" layer
|
||||
self.items[parent_index] = child;
|
||||
self.items[child_index] = parent;
|
||||
return .{
|
||||
.index = parent_index,
|
||||
.min_layer = !min_layer,
|
||||
};
|
||||
} else {
|
||||
return .{
|
||||
.index = child_index,
|
||||
.min_layer = min_layer,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
fn siftUp(self: *Self, start: StartIndexAndLayer) void {
|
||||
if (start.min_layer) {
|
||||
doSiftUp(self, start.index, lessThan);
|
||||
} else {
|
||||
doSiftUp(self, start.index, greaterThan);
|
||||
}
|
||||
}
|
||||
|
||||
fn doSiftUp(self: *Self, start_index: usize, compare: fn (Self, T, T) bool) void {
|
||||
var child_index = start_index;
|
||||
while (child_index > 2) {
|
||||
var grandparent_index = grandparentIndex(child_index);
|
||||
const child = self.items[child_index];
|
||||
const grandparent = self.items[grandparent_index];
|
||||
|
||||
// If the grandparent is already better, we have gone as far as we need to
|
||||
if (!compare(self.*, child, grandparent)) break;
|
||||
|
||||
// Otherwise swap the item with it's grandparent
|
||||
self.items[grandparent_index] = child;
|
||||
self.items[child_index] = grandparent;
|
||||
child_index = grandparent_index;
|
||||
}
|
||||
}
|
||||
|
||||
/// Look at the smallest element in the dequeue. Returns
|
||||
/// `null` if empty.
|
||||
pub fn peekMin(self: *Self) ?T {
|
||||
return if (self.len > 0) self.items[0] else null;
|
||||
}
|
||||
|
||||
/// Look at the largest element in the dequeue. Returns
|
||||
/// `null` if empty.
|
||||
pub fn peekMax(self: *Self) ?T {
|
||||
if (self.len == 0) return null;
|
||||
if (self.len == 1) return self.items[0];
|
||||
if (self.len == 2) return self.items[1];
|
||||
return self.bestItemAtIndices(1, 2, greaterThan).item;
|
||||
}
|
||||
|
||||
fn maxIndex(self: Self) ?usize {
|
||||
if (self.len == 0) return null;
|
||||
if (self.len == 1) return 0;
|
||||
if (self.len == 2) return 1;
|
||||
return self.bestItemAtIndices(1, 2, greaterThan).index;
|
||||
}
|
||||
|
||||
/// Pop the smallest element from the dequeue. Returns
|
||||
/// `null` if empty.
|
||||
pub fn removeMinOrNull(self: *Self) ?T {
|
||||
return if (self.len > 0) self.removeMin() else null;
|
||||
}
|
||||
|
||||
/// Remove and return the smallest element from the
|
||||
/// dequeue.
|
||||
pub fn removeMin(self: *Self) T {
|
||||
return self.removeIndex(0);
|
||||
}
|
||||
|
||||
/// Pop the largest element from the dequeue. Returns
|
||||
/// `null` if empty.
|
||||
pub fn removeMaxOrNull(self: *Self) ?T {
|
||||
return if (self.len > 0) self.removeMax() else null;
|
||||
}
|
||||
|
||||
/// Remove and return the largest element from the
|
||||
/// dequeue.
|
||||
pub fn removeMax(self: *Self) T {
|
||||
return self.removeIndex(self.maxIndex().?);
|
||||
}
|
||||
|
||||
/// Remove and return element at index. Indices are in the
|
||||
/// same order as iterator, which is not necessarily priority
|
||||
/// order.
|
||||
pub fn removeIndex(self: *Self, index: usize) T {
|
||||
const item = self.items[index];
|
||||
const last = self.items[self.len - 1];
|
||||
|
||||
self.items[index] = last;
|
||||
self.len -= 1;
|
||||
siftDown(self, index);
|
||||
|
||||
return item;
|
||||
}
|
||||
|
||||
fn siftDown(self: *Self, index: usize) void {
|
||||
if (isMinLayer(index)) {
|
||||
self.doSiftDown(index, lessThan);
|
||||
} else {
|
||||
self.doSiftDown(index, greaterThan);
|
||||
}
|
||||
}
|
||||
|
||||
fn doSiftDown(self: *Self, start_index: usize, compare: fn (Self, T, T) bool) void {
|
||||
var index = start_index;
|
||||
const half = self.len >> 1;
|
||||
while (true) {
|
||||
const first_grandchild_index = firstGrandchildIndex(index);
|
||||
const last_grandchild_index = first_grandchild_index + 3;
|
||||
|
||||
const elem = self.items[index];
|
||||
|
||||
if (last_grandchild_index < self.len) {
|
||||
// All four grandchildren exist
|
||||
const index2 = first_grandchild_index + 1;
|
||||
const index3 = index2 + 1;
|
||||
|
||||
// Find the best grandchild
|
||||
const best_left = self.bestItemAtIndices(first_grandchild_index, index2, compare);
|
||||
const best_right = self.bestItemAtIndices(index3, last_grandchild_index, compare);
|
||||
const best_grandchild = self.bestItem(best_left, best_right, compare);
|
||||
|
||||
// If the item is better than it's best grandchild, we are done
|
||||
if (compare(self.*, elem, best_grandchild.item) or elem == best_grandchild.item) return;
|
||||
|
||||
// Otherwise, swap them
|
||||
self.items[best_grandchild.index] = elem;
|
||||
self.items[index] = best_grandchild.item;
|
||||
index = best_grandchild.index;
|
||||
|
||||
// We might need to swap the element with it's parent
|
||||
self.swapIfParentIsBetter(elem, index, compare);
|
||||
} else {
|
||||
// The children or grandchildren are the last layer
|
||||
const first_child_index = firstChildIndex(index);
|
||||
if (first_child_index > self.len) return;
|
||||
|
||||
const best_descendent = self.bestDescendent(first_child_index, first_grandchild_index, compare);
|
||||
|
||||
// If the best descendant is still larger, we are done
|
||||
if (compare(self.*, elem, best_descendent.item) or elem == best_descendent.item) return;
|
||||
|
||||
// Otherwise swap them
|
||||
self.items[best_descendent.index] = elem;
|
||||
self.items[index] = best_descendent.item;
|
||||
index = best_descendent.index;
|
||||
|
||||
// If we didn't swap a grandchild, we are done
|
||||
if (index < first_grandchild_index) return;
|
||||
|
||||
// We might need to swap the element with it's parent
|
||||
self.swapIfParentIsBetter(elem, index, compare);
|
||||
return;
|
||||
}
|
||||
|
||||
// If we are now in the last layer, we are done
|
||||
if (index >= half) return;
|
||||
}
|
||||
}
|
||||
|
||||
fn swapIfParentIsBetter(self: *Self, child: T, child_index: usize, compare: fn (Self, T, T) bool) void {
|
||||
const parent_index = parentIndex(child_index);
|
||||
const parent = self.items[parent_index];
|
||||
|
||||
if (compare(self.*, parent, child)) {
|
||||
self.items[parent_index] = child;
|
||||
self.items[child_index] = parent;
|
||||
}
|
||||
}
|
||||
|
||||
const ItemAndIndex = struct {
|
||||
item: T,
|
||||
index: usize,
|
||||
};
|
||||
|
||||
fn getItem(self: Self, index: usize) ItemAndIndex {
|
||||
return .{
|
||||
.item = self.items[index],
|
||||
.index = index,
|
||||
};
|
||||
}
|
||||
|
||||
fn bestItem(self: Self, item1: ItemAndIndex, item2: ItemAndIndex, compare: fn (Self, T, T) bool) ItemAndIndex {
|
||||
if (compare(self, item1.item, item2.item)) {
|
||||
return item1;
|
||||
} else {
|
||||
return item2;
|
||||
}
|
||||
}
|
||||
|
||||
fn bestItemAtIndices(self: Self, index1: usize, index2: usize, compare: fn (Self, T, T) bool) ItemAndIndex {
|
||||
var item1 = self.getItem(index1);
|
||||
var item2 = self.getItem(index2);
|
||||
return self.bestItem(item1, item2, compare);
|
||||
}
|
||||
|
||||
fn bestDescendent(self: Self, first_child_index: usize, first_grandchild_index: usize, compare: fn (Self, T, T) bool) ItemAndIndex {
|
||||
const second_child_index = first_child_index + 1;
|
||||
if (first_grandchild_index >= self.len) {
|
||||
// No grandchildren, find the best child (second may not exist)
|
||||
if (second_child_index >= self.len) {
|
||||
return .{
|
||||
.item = self.items[first_child_index],
|
||||
.index = first_child_index,
|
||||
};
|
||||
} else {
|
||||
return self.bestItemAtIndices(first_child_index, second_child_index, compare);
|
||||
}
|
||||
}
|
||||
|
||||
const second_grandchild_index = first_grandchild_index + 1;
|
||||
if (second_grandchild_index >= self.len) {
|
||||
// One grandchild, so we know there is a second child. Compare first grandchild and second child
|
||||
return self.bestItemAtIndices(first_grandchild_index, second_child_index, compare);
|
||||
}
|
||||
|
||||
const best_left_grandchild_index = self.bestItemAtIndices(first_grandchild_index, second_grandchild_index, compare).index;
|
||||
const third_grandchild_index = second_grandchild_index + 1;
|
||||
if (third_grandchild_index >= self.len) {
|
||||
// Two grandchildren, and we know the best. Compare this to second child.
|
||||
return self.bestItemAtIndices(best_left_grandchild_index, second_child_index, compare);
|
||||
} else {
|
||||
// Three grandchildren, compare the min of the first two with the third
|
||||
return self.bestItemAtIndices(best_left_grandchild_index, third_grandchild_index, compare);
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the number of elements remaining in the heap
|
||||
pub fn count(self: Self) usize {
|
||||
return self.len;
|
||||
}
|
||||
|
||||
/// Return the number of elements that can be added to the
|
||||
/// dequeue before more memory is allocated.
|
||||
pub fn capacity(self: Self) usize {
|
||||
return self.items.len;
|
||||
}
|
||||
|
||||
/// Heap takes ownership of the passed in slice. The slice must have been
|
||||
/// allocated with `allocator`.
|
||||
/// De-initialize with `deinit`.
|
||||
pub fn fromOwnedSlice(allocator: *Allocator, lessThanFn: fn (T, T) bool, items: []T) Self {
|
||||
var dequeue = Self{
|
||||
.items = items,
|
||||
.len = items.len,
|
||||
.allocator = allocator,
|
||||
.lessThanFn = lessThanFn,
|
||||
};
|
||||
const half = (dequeue.len >> 1) - 1;
|
||||
var i: usize = 0;
|
||||
while (i <= half) : (i += 1) {
|
||||
const index = half - i;
|
||||
dequeue.siftDown(index);
|
||||
}
|
||||
return dequeue;
|
||||
}
|
||||
|
||||
pub fn ensureCapacity(self: *Self, new_capacity: usize) !void {
|
||||
var better_capacity = self.capacity();
|
||||
if (better_capacity >= new_capacity) return;
|
||||
while (true) {
|
||||
better_capacity += better_capacity / 2 + 8;
|
||||
if (better_capacity >= new_capacity) break;
|
||||
}
|
||||
self.items = try self.allocator.realloc(self.items, better_capacity);
|
||||
}
|
||||
|
||||
pub fn resize(self: *Self, new_len: usize) !void {
|
||||
try self.ensureCapacity(new_len);
|
||||
self.len = new_len;
|
||||
}
|
||||
|
||||
pub fn shrink(self: *Self, new_len: usize) void {
|
||||
// TODO take advantage of the new realloc semantics
|
||||
assert(new_len <= self.len);
|
||||
self.len = new_len;
|
||||
}
|
||||
|
||||
pub fn update(self: *Self, elem: T, new_elem: T) !void {
|
||||
var old_index: usize = std.mem.indexOfScalar(T, self.items, elem) orelse return error.ElementNotFound;
|
||||
_ = self.removeIndex(old_index);
|
||||
self.addUnchecked(new_elem);
|
||||
}
|
||||
|
||||
pub const Iterator = struct {
|
||||
heap: *PriorityDequeue(T),
|
||||
count: usize,
|
||||
|
||||
pub fn next(it: *Iterator) ?T {
|
||||
if (it.count >= it.heap.len) return null;
|
||||
const out = it.count;
|
||||
it.count += 1;
|
||||
return it.heap.items[out];
|
||||
}
|
||||
|
||||
pub fn reset(it: *Iterator) void {
|
||||
it.count = 0;
|
||||
}
|
||||
};
|
||||
|
||||
/// Return an iterator that walks the heap without consuming
|
||||
/// it. Invalidated if the heap is modified.
|
||||
pub fn iterator(self: *Self) Iterator {
|
||||
return Iterator{
|
||||
.heap = self,
|
||||
.count = 0,
|
||||
};
|
||||
}
|
||||
|
||||
fn dump(self: *Self) void {
|
||||
warn("{{ ", .{});
|
||||
warn("items: ", .{});
|
||||
for (self.items) |e, i| {
|
||||
if (i >= self.len) break;
|
||||
warn("{}, ", .{e});
|
||||
}
|
||||
warn("array: ", .{});
|
||||
for (self.items) |e, i| {
|
||||
warn("{}, ", .{e});
|
||||
}
|
||||
warn("len: {} ", .{self.len});
|
||||
warn("capacity: {}", .{self.capacity()});
|
||||
warn(" }}\n", .{});
|
||||
}
|
||||
|
||||
fn parentIndex(index: usize) usize {
|
||||
return (index - 1) >> 1;
|
||||
}
|
||||
|
||||
fn grandparentIndex(index: usize) usize {
|
||||
return parentIndex(parentIndex(index));
|
||||
}
|
||||
|
||||
fn firstChildIndex(index: usize) usize {
|
||||
return (index << 1) + 1;
|
||||
}
|
||||
|
||||
fn firstGrandchildIndex(index: usize) usize {
|
||||
return firstChildIndex(firstChildIndex(index));
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
fn lessThanComparison(a: u32, b: u32) bool {
|
||||
return a < b;
|
||||
}
|
||||
|
||||
const Heap = PriorityDequeue(u32);
|
||||
|
||||
test "std.PriorityDequeue: add and remove min" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
try heap.add(54);
|
||||
try heap.add(12);
|
||||
try heap.add(7);
|
||||
try heap.add(23);
|
||||
try heap.add(25);
|
||||
try heap.add(13);
|
||||
|
||||
expectEqual(@as(u32, 7), heap.removeMin());
|
||||
expectEqual(@as(u32, 12), heap.removeMin());
|
||||
expectEqual(@as(u32, 13), heap.removeMin());
|
||||
expectEqual(@as(u32, 23), heap.removeMin());
|
||||
expectEqual(@as(u32, 25), heap.removeMin());
|
||||
expectEqual(@as(u32, 54), heap.removeMin());
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: add and remove max" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
try heap.add(54);
|
||||
try heap.add(12);
|
||||
try heap.add(7);
|
||||
try heap.add(23);
|
||||
try heap.add(25);
|
||||
try heap.add(13);
|
||||
|
||||
expectEqual(@as(u32, 54), heap.removeMax());
|
||||
expectEqual(@as(u32, 25), heap.removeMax());
|
||||
expectEqual(@as(u32, 23), heap.removeMax());
|
||||
expectEqual(@as(u32, 13), heap.removeMax());
|
||||
expectEqual(@as(u32, 12), heap.removeMax());
|
||||
expectEqual(@as(u32, 7), heap.removeMax());
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: add and remove same min" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
try heap.add(1);
|
||||
try heap.add(1);
|
||||
try heap.add(2);
|
||||
try heap.add(2);
|
||||
try heap.add(1);
|
||||
try heap.add(1);
|
||||
|
||||
expectEqual(@as(u32, 1), heap.removeMin());
|
||||
expectEqual(@as(u32, 1), heap.removeMin());
|
||||
expectEqual(@as(u32, 1), heap.removeMin());
|
||||
expectEqual(@as(u32, 1), heap.removeMin());
|
||||
expectEqual(@as(u32, 2), heap.removeMin());
|
||||
expectEqual(@as(u32, 2), heap.removeMin());
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: add and remove same max" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
try heap.add(1);
|
||||
try heap.add(1);
|
||||
try heap.add(2);
|
||||
try heap.add(2);
|
||||
try heap.add(1);
|
||||
try heap.add(1);
|
||||
|
||||
expectEqual(@as(u32, 2), heap.removeMax());
|
||||
expectEqual(@as(u32, 2), heap.removeMax());
|
||||
expectEqual(@as(u32, 1), heap.removeMax());
|
||||
expectEqual(@as(u32, 1), heap.removeMax());
|
||||
expectEqual(@as(u32, 1), heap.removeMax());
|
||||
expectEqual(@as(u32, 1), heap.removeMax());
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: removeOrNull empty" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
expect(heap.removeMinOrNull() == null);
|
||||
expect(heap.removeMaxOrNull() == null);
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: edge case 3 elements" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
try heap.add(9);
|
||||
try heap.add(3);
|
||||
try heap.add(2);
|
||||
|
||||
expectEqual(@as(u32, 2), heap.removeMin());
|
||||
expectEqual(@as(u32, 3), heap.removeMin());
|
||||
expectEqual(@as(u32, 9), heap.removeMin());
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: edge case 3 elements max" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
try heap.add(9);
|
||||
try heap.add(3);
|
||||
try heap.add(2);
|
||||
|
||||
expectEqual(@as(u32, 9), heap.removeMax());
|
||||
expectEqual(@as(u32, 3), heap.removeMax());
|
||||
expectEqual(@as(u32, 2), heap.removeMax());
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: peekMin" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
expect(heap.peekMin() == null);
|
||||
|
||||
try heap.add(9);
|
||||
try heap.add(3);
|
||||
try heap.add(2);
|
||||
|
||||
expect(heap.peekMin().? == 2);
|
||||
expect(heap.peekMin().? == 2);
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: peekMax" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
expect(heap.peekMin() == null);
|
||||
|
||||
try heap.add(9);
|
||||
try heap.add(3);
|
||||
try heap.add(2);
|
||||
|
||||
expect(heap.peekMax().? == 9);
|
||||
expect(heap.peekMax().? == 9);
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: sift up with odd indices" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
|
||||
for (items) |e| {
|
||||
try heap.add(e);
|
||||
}
|
||||
|
||||
const sorted_items = [_]u32{ 1, 2, 5, 6, 7, 7, 11, 12, 13, 14, 15, 15, 16, 21, 22, 24, 24, 25 };
|
||||
for (sorted_items) |e| {
|
||||
expectEqual(e, heap.removeMin());
|
||||
}
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: sift up with odd indices" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
|
||||
for (items) |e| {
|
||||
try heap.add(e);
|
||||
}
|
||||
|
||||
const sorted_items = [_]u32{ 25, 24, 24, 22, 21, 16, 15, 15, 14, 13, 12, 11, 7, 7, 6, 5, 2, 1 };
|
||||
for (sorted_items) |e| {
|
||||
expectEqual(e, heap.removeMax());
|
||||
}
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: addSlice min" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
|
||||
try heap.addSlice(items[0..]);
|
||||
|
||||
const sorted_items = [_]u32{ 1, 2, 5, 6, 7, 7, 11, 12, 13, 14, 15, 15, 16, 21, 22, 24, 24, 25 };
|
||||
for (sorted_items) |e| {
|
||||
expectEqual(e, heap.removeMin());
|
||||
}
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: addSlice max" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
|
||||
try heap.addSlice(items[0..]);
|
||||
|
||||
const sorted_items = [_]u32{ 25, 24, 24, 22, 21, 16, 15, 15, 14, 13, 12, 11, 7, 7, 6, 5, 2, 1 };
|
||||
for (sorted_items) |e| {
|
||||
expectEqual(e, heap.removeMax());
|
||||
}
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: fromOwnedSlice" {
|
||||
const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
|
||||
const heap_items = try testing.allocator.dupe(u32, items[0..]);
|
||||
var heap = Heap.fromOwnedSlice(testing.allocator, lessThanComparison, heap_items[0..]);
|
||||
defer heap.deinit();
|
||||
|
||||
const sorted_items = [_]u32{ 1, 2, 5, 6, 7, 7, 11, 12, 13, 14, 15, 15, 16, 21, 22, 24, 24, 25 };
|
||||
for (sorted_items) |e| {
|
||||
expectEqual(e, heap.removeMin());
|
||||
}
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: update min heap" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
try heap.add(55);
|
||||
try heap.add(44);
|
||||
try heap.add(11);
|
||||
try heap.update(55, 5);
|
||||
try heap.update(44, 4);
|
||||
try heap.update(11, 1);
|
||||
expectEqual(@as(u32, 1), heap.removeMin());
|
||||
expectEqual(@as(u32, 4), heap.removeMin());
|
||||
expectEqual(@as(u32, 5), heap.removeMin());
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: update same min heap" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
try heap.add(1);
|
||||
try heap.add(1);
|
||||
try heap.add(2);
|
||||
try heap.add(2);
|
||||
try heap.update(1, 5);
|
||||
try heap.update(2, 4);
|
||||
expectEqual(@as(u32, 1), heap.removeMin());
|
||||
expectEqual(@as(u32, 2), heap.removeMin());
|
||||
expectEqual(@as(u32, 4), heap.removeMin());
|
||||
expectEqual(@as(u32, 5), heap.removeMin());
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: update max heap" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
try heap.add(55);
|
||||
try heap.add(44);
|
||||
try heap.add(11);
|
||||
try heap.update(55, 5);
|
||||
try heap.update(44, 1);
|
||||
try heap.update(11, 4);
|
||||
|
||||
expectEqual(@as(u32, 5), heap.removeMax());
|
||||
expectEqual(@as(u32, 4), heap.removeMax());
|
||||
expectEqual(@as(u32, 1), heap.removeMax());
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: update same max heap" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
try heap.add(1);
|
||||
try heap.add(1);
|
||||
try heap.add(2);
|
||||
try heap.add(2);
|
||||
try heap.update(1, 5);
|
||||
try heap.update(2, 4);
|
||||
expectEqual(@as(u32, 5), heap.removeMax());
|
||||
expectEqual(@as(u32, 4), heap.removeMax());
|
||||
expectEqual(@as(u32, 2), heap.removeMax());
|
||||
expectEqual(@as(u32, 1), heap.removeMax());
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: iterator" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
var map = std.AutoHashMap(u32, void).init(testing.allocator);
|
||||
defer {
|
||||
heap.deinit();
|
||||
map.deinit();
|
||||
}
|
||||
|
||||
const items = [_]u32{ 54, 12, 7, 23, 25, 13 };
|
||||
for (items) |e| {
|
||||
_ = try heap.add(e);
|
||||
_ = try map.put(e, {});
|
||||
}
|
||||
|
||||
var it = heap.iterator();
|
||||
while (it.next()) |e| {
|
||||
_ = map.remove(e);
|
||||
}
|
||||
|
||||
expectEqual(@as(usize, 0), map.count());
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: remove at index" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
try heap.add(3);
|
||||
try heap.add(2);
|
||||
try heap.add(1);
|
||||
|
||||
var it = heap.iterator();
|
||||
var elem = it.next();
|
||||
var idx: usize = 0;
|
||||
const two_idx = while (elem != null) : (elem = it.next()) {
|
||||
if (elem.? == 2)
|
||||
break idx;
|
||||
idx += 1;
|
||||
} else unreachable;
|
||||
|
||||
expectEqual(heap.removeIndex(two_idx), 2);
|
||||
expectEqual(heap.removeMin(), 1);
|
||||
expectEqual(heap.removeMin(), 3);
|
||||
expectEqual(heap.removeMinOrNull(), null);
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: iterator while empty" {
|
||||
var heap = Heap.init(testing.allocator, lessThanComparison);
|
||||
defer heap.deinit();
|
||||
|
||||
var it = heap.iterator();
|
||||
|
||||
expectEqual(it.next(), null);
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: fuzz testing min" {
|
||||
var prng = std.rand.DefaultPrng.init(0x12345678);
|
||||
|
||||
const test_case_count = 100;
|
||||
const heap_size = 1_000;
|
||||
|
||||
var i: usize = 0;
|
||||
while (i < test_case_count) : (i += 1) {
|
||||
try fuzzTestMin(&prng.random, heap_size);
|
||||
}
|
||||
}
|
||||
|
||||
fn fuzzTestMin(rng: *std.rand.Random, comptime heap_size: usize) !void {
|
||||
const allocator = testing.allocator;
|
||||
const items = try generateRandomSlice(allocator, rng, heap_size);
|
||||
|
||||
var heap = Heap.fromOwnedSlice(allocator, lessThanComparison, items);
|
||||
defer heap.deinit();
|
||||
|
||||
var last_removed: ?u32 = null;
|
||||
while (heap.removeMinOrNull()) |next| {
|
||||
if (last_removed) |last| {
|
||||
expect(last <= next);
|
||||
}
|
||||
last_removed = next;
|
||||
}
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: fuzz testing max" {
|
||||
var prng = std.rand.DefaultPrng.init(0x87654321);
|
||||
|
||||
const test_case_count = 100;
|
||||
const heap_size = 1_000;
|
||||
|
||||
var i: usize = 0;
|
||||
while (i < test_case_count) : (i += 1) {
|
||||
try fuzzTestMax(&prng.random, heap_size);
|
||||
}
|
||||
}
|
||||
|
||||
fn fuzzTestMax(rng: *std.rand.Random, heap_size: usize) !void {
|
||||
const allocator = testing.allocator;
|
||||
const items = try generateRandomSlice(allocator, rng, heap_size);
|
||||
|
||||
var heap = Heap.fromOwnedSlice(testing.allocator, lessThanComparison, items);
|
||||
defer heap.deinit();
|
||||
|
||||
var last_removed: ?u32 = null;
|
||||
while (heap.removeMaxOrNull()) |next| {
|
||||
if (last_removed) |last| {
|
||||
expect(last >= next);
|
||||
}
|
||||
last_removed = next;
|
||||
}
|
||||
}
|
||||
|
||||
test "std.PriorityDequeue: fuzz testing min and max" {
|
||||
var prng = std.rand.DefaultPrng.init(0x87654321);
|
||||
|
||||
const test_case_count = 100;
|
||||
const heap_size = 1_000;
|
||||
|
||||
var i: usize = 0;
|
||||
while (i < test_case_count) : (i += 1) {
|
||||
try fuzzTestMinMax(&prng.random, heap_size);
|
||||
}
|
||||
}
|
||||
|
||||
fn fuzzTestMinMax(rng: *std.rand.Random, heap_size: usize) !void {
|
||||
const allocator = testing.allocator;
|
||||
const items = try generateRandomSlice(allocator, rng, heap_size);
|
||||
|
||||
var heap = Heap.fromOwnedSlice(allocator, lessThanComparison, items);
|
||||
defer heap.deinit();
|
||||
|
||||
var last_min: ?u32 = null;
|
||||
var last_max: ?u32 = null;
|
||||
var i: usize = 0;
|
||||
while (i < heap_size) : (i += 1) {
|
||||
if (i % 2 == 0) {
|
||||
const next = heap.removeMin();
|
||||
if (last_min) |last| {
|
||||
expect(last <= next);
|
||||
}
|
||||
last_min = next;
|
||||
} else {
|
||||
const next = heap.removeMax();
|
||||
if (last_max) |last| {
|
||||
expect(last >= next);
|
||||
}
|
||||
last_max = next;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn generateRandomSlice(allocator: *std.mem.Allocator, rng: *std.rand.Random, size: usize) ![]u32 {
|
||||
var array = std.ArrayList(u32).init(allocator);
|
||||
try array.ensureCapacity(size);
|
||||
|
||||
var i: usize = 0;
|
||||
while (i < size) : (i += 1) {
|
||||
const elem = rng.int(u32);
|
||||
try array.append(elem);
|
||||
}
|
||||
|
||||
return array.toOwnedSlice();
|
||||
}
|
||||
|
|
@ -25,6 +25,7 @@ pub const PackedIntArrayEndian = @import("packed_int_array.zig").PackedIntArrayE
|
|||
pub const PackedIntSlice = @import("packed_int_array.zig").PackedIntSlice;
|
||||
pub const PackedIntSliceEndian = @import("packed_int_array.zig").PackedIntSliceEndian;
|
||||
pub const PriorityQueue = @import("priority_queue.zig").PriorityQueue;
|
||||
pub const PriorityDequeue = @import("priority_dequeue.zig").PriorityDequeue;
|
||||
pub const Progress = @import("Progress.zig");
|
||||
pub const SemanticVersion = @import("SemanticVersion.zig");
|
||||
pub const SinglyLinkedList = @import("linked_list.zig").SinglyLinkedList;
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue