mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 13:54:21 +00:00
crypto.kt128: when using incremental hashing, use SIMD when possible (#25783)
Also add plain kt128 (without threading) to the benchmarks
This commit is contained in:
parent
2f4bca41ea
commit
bf9082518c
2 changed files with 112 additions and 21 deletions
|
|
@ -30,6 +30,7 @@ const hashes = [_]Crypto{
|
|||
Crypto{ .ty = crypto.hash.sha3.Shake256, .name = "shake-256" },
|
||||
Crypto{ .ty = crypto.hash.sha3.TurboShake128(null), .name = "turboshake-128" },
|
||||
Crypto{ .ty = crypto.hash.sha3.TurboShake256(null), .name = "turboshake-256" },
|
||||
Crypto{ .ty = crypto.hash.sha3.KT128, .name = "kt128" },
|
||||
Crypto{ .ty = crypto.hash.blake2.Blake2s256, .name = "blake2s" },
|
||||
Crypto{ .ty = crypto.hash.blake2.Blake2b512, .name = "blake2b" },
|
||||
Crypto{ .ty = crypto.hash.Blake3, .name = "blake3" },
|
||||
|
|
|
|||
|
|
@ -848,6 +848,10 @@ fn KTHash(
|
|||
final_state: ?StateType, // Running TurboSHAKE state for final node
|
||||
num_leaves: usize, // Count of leaves processed (after first chunk)
|
||||
|
||||
// SIMD chunk batching
|
||||
pending_chunks: [8 * chunk_size]u8 align(cache_line_size), // Buffer for up to 8 chunks
|
||||
pending_count: usize, // Number of complete chunks in pending_chunks
|
||||
|
||||
/// Initialize a KangarooTwelve hashing context.
|
||||
/// The customization string is optional and used for domain separation.
|
||||
pub fn init(options: Options) Self {
|
||||
|
|
@ -861,9 +865,48 @@ fn KTHash(
|
|||
.first_chunk = null,
|
||||
.final_state = null,
|
||||
.num_leaves = 0,
|
||||
.pending_chunks = undefined,
|
||||
.pending_count = 0,
|
||||
};
|
||||
}
|
||||
|
||||
/// Flush all pending chunks using SIMD when possible
|
||||
fn flushPendingChunks(self: *Self) void {
|
||||
const cv_size = Variant.cv_size;
|
||||
|
||||
// Process all pending chunks using the largest SIMD batch sizes possible
|
||||
while (self.pending_count > 0) {
|
||||
// Try SIMD batches in decreasing size order
|
||||
inline for ([_]usize{ 8, 4, 2 }) |batch_size| {
|
||||
if (optimal_vector_len >= batch_size and self.pending_count >= batch_size) {
|
||||
var leaf_cvs: [batch_size * cv_size]u8 align(cache_line_size) = undefined;
|
||||
processLeaves(Variant, batch_size, self.pending_chunks[0 .. batch_size * chunk_size], &leaf_cvs);
|
||||
self.final_state.?.update(&leaf_cvs);
|
||||
self.num_leaves += batch_size;
|
||||
self.pending_count -= batch_size;
|
||||
|
||||
// Shift remaining chunks to the front
|
||||
if (self.pending_count > 0) {
|
||||
const remaining_bytes = self.pending_count * chunk_size;
|
||||
@memcpy(self.pending_chunks[0..remaining_bytes], self.pending_chunks[batch_size * chunk_size ..][0..remaining_bytes]);
|
||||
}
|
||||
break; // Continue outer loop to try next batch
|
||||
}
|
||||
}
|
||||
|
||||
// If no SIMD batch was possible, process one chunk with scalar code
|
||||
if (self.pending_count > 0 and self.pending_count < 2) {
|
||||
var cv_buffer: [64]u8 = undefined;
|
||||
const cv_slice = MultiSliceView.init(self.pending_chunks[0..chunk_size], &[_]u8{}, &[_]u8{});
|
||||
Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||||
self.final_state.?.update(cv_buffer[0..cv_size]);
|
||||
self.num_leaves += 1;
|
||||
self.pending_count -= 1;
|
||||
break; // No more chunks to process
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Absorb data into the hash state.
|
||||
/// Can be called multiple times to incrementally add data.
|
||||
pub fn update(self: *Self, data: []const u8) void {
|
||||
|
|
@ -895,15 +938,21 @@ fn KTHash(
|
|||
const padding = [_]u8{ 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
||||
self.final_state.?.update(&padding);
|
||||
} else {
|
||||
// Subsequent chunks - process as leaf and absorb CV
|
||||
const cv_size = Variant.cv_size;
|
||||
var cv_buffer: [64]u8 = undefined; // Max CV size
|
||||
const cv_slice = MultiSliceView.init(&self.buffer, &[_]u8{}, &[_]u8{});
|
||||
Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||||
// Add chunk to pending buffer for SIMD batch processing
|
||||
@memcpy(self.pending_chunks[self.pending_count * chunk_size ..][0..chunk_size], &self.buffer);
|
||||
self.pending_count += 1;
|
||||
|
||||
// Absorb CV into final state immediately
|
||||
self.final_state.?.update(cv_buffer[0..cv_size]);
|
||||
self.num_leaves += 1;
|
||||
// Flush when we have enough chunks for optimal SIMD batch
|
||||
// Determine best batch size for this architecture
|
||||
const optimal_batch_size = comptime blk: {
|
||||
if (optimal_vector_len >= 8) break :blk 8;
|
||||
if (optimal_vector_len >= 4) break :blk 4;
|
||||
if (optimal_vector_len >= 2) break :blk 2;
|
||||
break :blk 1;
|
||||
};
|
||||
if (self.pending_count >= optimal_batch_size) {
|
||||
self.flushPendingChunks();
|
||||
}
|
||||
}
|
||||
self.buffer_len = 0;
|
||||
}
|
||||
|
|
@ -931,24 +980,65 @@ fn KTHash(
|
|||
return;
|
||||
}
|
||||
|
||||
// Tree mode: we've already absorbed first_chunk + padding + intermediate CVs
|
||||
// Now handle remaining buffer data
|
||||
const remaining_with_custom_len = self.buffer_len + self.customization.len + self.custom_len_enc.len;
|
||||
// Flush any pending chunks with SIMD
|
||||
self.flushPendingChunks();
|
||||
|
||||
// Build view over remaining data (buffer + customization + encoding)
|
||||
const remaining_view = MultiSliceView.init(
|
||||
self.buffer[0..self.buffer_len],
|
||||
self.customization,
|
||||
self.custom_len_enc.slice(),
|
||||
);
|
||||
const remaining_len = remaining_view.totalLen();
|
||||
|
||||
var final_leaves = self.num_leaves;
|
||||
var leaf_start: usize = 0;
|
||||
|
||||
if (remaining_with_custom_len > 0) {
|
||||
// Build final leaf data with customization
|
||||
var final_leaf_buffer: [chunk_size + 256]u8 = undefined; // Extra space for customization
|
||||
@memcpy(final_leaf_buffer[0..self.buffer_len], self.buffer[0..self.buffer_len]);
|
||||
@memcpy(final_leaf_buffer[self.buffer_len..][0..self.customization.len], self.customization);
|
||||
@memcpy(final_leaf_buffer[self.buffer_len + self.customization.len ..][0..self.custom_len_enc.len], self.custom_len_enc.slice());
|
||||
// Tree mode: initialize if not already done (lazy initialization)
|
||||
if (self.final_state == null and remaining_len > 0) {
|
||||
self.final_state = StateType.init(.{});
|
||||
|
||||
// Generate CV for final leaf and absorb it
|
||||
var cv_buffer: [64]u8 = undefined; // Max CV size
|
||||
const cv_slice = MultiSliceView.init(final_leaf_buffer[0..remaining_with_custom_len], &[_]u8{}, &[_]u8{});
|
||||
Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||||
// Absorb first chunk (up to chunk_size bytes from remaining data)
|
||||
const first_chunk_len = @min(chunk_size, remaining_len);
|
||||
if (remaining_view.tryGetSlice(0, first_chunk_len)) |first_chunk| {
|
||||
// Data is contiguous, use it directly
|
||||
self.final_state.?.update(first_chunk);
|
||||
} else {
|
||||
// Data spans boundaries, copy to buffer
|
||||
var first_chunk_buf: [chunk_size]u8 = undefined;
|
||||
remaining_view.copyRange(0, first_chunk_len, first_chunk_buf[0..first_chunk_len]);
|
||||
self.final_state.?.update(first_chunk_buf[0..first_chunk_len]);
|
||||
}
|
||||
|
||||
// Absorb padding (8 bytes: 0x03 followed by 7 zeros)
|
||||
const padding = [_]u8{ 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
||||
self.final_state.?.update(&padding);
|
||||
|
||||
// Process remaining data as leaves
|
||||
leaf_start = first_chunk_len;
|
||||
}
|
||||
|
||||
// Process all remaining data as leaves (starting from leaf_start)
|
||||
var offset = leaf_start;
|
||||
while (offset < remaining_len) {
|
||||
const leaf_end = @min(offset + chunk_size, remaining_len);
|
||||
const leaf_size = leaf_end - offset;
|
||||
|
||||
var cv_buffer: [64]u8 = undefined;
|
||||
if (remaining_view.tryGetSlice(offset, leaf_end)) |leaf_data| {
|
||||
// Data is contiguous, use it directly
|
||||
const cv_slice = MultiSliceView.init(leaf_data, &[_]u8{}, &[_]u8{});
|
||||
Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||||
} else {
|
||||
// Data spans boundaries, copy to buffer
|
||||
var leaf_buf: [chunk_size]u8 = undefined;
|
||||
remaining_view.copyRange(offset, leaf_end, leaf_buf[0..leaf_size]);
|
||||
const cv_slice = MultiSliceView.init(leaf_buf[0..leaf_size], &[_]u8{}, &[_]u8{});
|
||||
Variant.turboSHAKEToBuffer(&cv_slice, 0x0B, cv_buffer[0..cv_size]);
|
||||
}
|
||||
self.final_state.?.update(cv_buffer[0..cv_size]);
|
||||
final_leaves += 1;
|
||||
offset = leaf_end;
|
||||
}
|
||||
|
||||
// Absorb right_encode(num_leaves) and terminator
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue