Added self-hosted x86 CPU detection.

This commit is contained in:
alichay 2020-03-04 07:40:30 -06:00 committed by Andrew Kelley
parent 7f975bf09f
commit e24f29bbad
No known key found for this signature in database
GPG key ID: 7C5F548F728501A9
3 changed files with 681 additions and 4 deletions

View file

@ -844,8 +844,20 @@ pub const NativeTargetInfo = struct {
} }
fn detectNativeCpuAndFeatures(cross_target: CrossTarget) Target.Cpu { fn detectNativeCpuAndFeatures(cross_target: CrossTarget) Target.Cpu {
// TODO Detect native CPU model & features. Until that is implemented we use baseline.
return baselineCpuAndFeatures(cross_target); var baseline = baselineCpuAndFeatures(cross_target);
switch(Target.current.cpu.arch) {
.x86_64, .i386 => {
const x86_detection = @import("system/x86.zig");
x86_detection.detectNativeCpuAndFeatures(&baseline);
return baseline;
},
else => {
// // TODO Detect native CPU model & features. Until that is implemented we use baseline.
return baseline;
}
}
} }
fn baselineCpuAndFeatures(cross_target: CrossTarget) Target.Cpu { fn baselineCpuAndFeatures(cross_target: CrossTarget) Target.Cpu {

664
lib/std/zig/system/x86.zig Normal file
View file

@ -0,0 +1,664 @@
const std = @import("std");
const Target = std.Target;
const CrossTarget = std.zig.CrossTarget;
fn setFeature(cpu: *Target.Cpu, feature: Target.x86.Feature, enabled: bool) void {
const idx = @as(Target.Cpu.Feature.Set.Index, @enumToInt(feature));
if(enabled) cpu.features.addFeature(idx)
else cpu.features.removeFeature(idx);
}
fn hasFeature(cpu: *Target.Cpu, feature: Target.x86.Feature) bool {
const idx = @as(Target.Cpu.Feature.Set.Index, @enumToInt(feature));
return cpu.features.isEnabled(idx);
}
inline fn bit(input: u32, offset: u5) bool {
return (input >> offset) & 1 != 0;
}
pub fn detectNativeCpuAndFeatures(cpu: *Target.Cpu) void {
defer {
// Whenever we find a model, add that model's featureset.
cpu.features.addFeatureSet(cpu.model.features);
}
// When we can't identify a specific model,
// we guess based on processor features.
// This seems to be the accepted standard.
detectNativeFeatures(cpu);
var leaf = cpuid(0, 0);
const max_leaf = leaf.eax;
const vendor = leaf.ebx;
if(max_leaf < 1) {
cpu.model = &Target.x86.cpu.generic;
return;
}
leaf = cpuid(0x1, 0);
const brand_id = leaf.ebx & 0xff;
var family: u32 = 0;
var model: u32 = 0;
{ // Detect model and family
family = (leaf.eax >> 8) & 0xf;
model = (leaf.eax >> 4) & 0xf;
if (family == 6 or family == 0xf) {
if (family == 0xf) {
family += (leaf.eax >> 20) & 0xff;
}
model += ((leaf.eax >> 16) & 0xf) << 4;
}
}
switch(vendor) {
0x756e6547 => {
detectIntelProcessor(cpu, family, model, brand_id);
},
0x68747541 => {
detectAMDProcessor(cpu, family, model);
},
else => {
cpu.model = &Target.x86.cpu.generic;
},
}
}
fn detectIntelProcessor(cpu: *Target.Cpu, family: u32, model: u32, brand_id: u32) void {
if (brand_id != 0) {
cpu.model = &Target.x86.cpu.generic;
return;
}
switch(family) {
3 => {
cpu.model = &Target.x86.cpu._i386;
return;
},
4 => {
cpu.model = &Target.x86.cpu._i486;
return;
},
5 => {
if(hasFeature(cpu, .mmx)) {
cpu.model = &Target.x86.cpu.pentium_mmx;
return;
}
cpu.model = &Target.x86.cpu.pentium;
return;
},
6 => {
switch(model) {
0x01 => {
cpu.model = &Target.x86.cpu.pentiumpro;
return;
},
0x03, 0x05, 0x06 => {
cpu.model = &Target.x86.cpu.pentium2;
return;
},
0x07, 0x08, 0x0a, 0x0b => {
cpu.model = &Target.x86.cpu.pentium3;
return;
},
0x09, 0x0d, 0x15 => {
cpu.model = &Target.x86.cpu.pentium_m;
return;
},
0x0e => {
cpu.model = &Target.x86.cpu.yonah;
return;
},
0x0f, 0x16 => {
cpu.model = &Target.x86.cpu.core2;
return;
},
0x17, 0x1d => {
cpu.model = &Target.x86.cpu.penryn;
return;
},
0x1a, 0x1e, 0x1f, 0x2e => {
cpu.model = &Target.x86.cpu.nehalem;
return;
},
0x25, 0x2c, 0x2f => {
cpu.model = &Target.x86.cpu.westmere;
return;
},
0x2a, 0x2d => {
cpu.model = &Target.x86.cpu.sandybridge;
return;
},
0x3a, 0x3e => {
cpu.model = &Target.x86.cpu.ivybridge;
return;
},
0x3c, 0x3f, 0x45, 0x46 => {
cpu.model = &Target.x86.cpu.haswell;
return;
},
0x3d, 0x47, 0x4f, 0x56 => {
cpu.model = &Target.x86.cpu.broadwell;
return;
},
0x4e, 0x5e, 0x8e, 0x9e => {
cpu.model = &Target.x86.cpu.skylake;
return;
},
0x55 => {
if(hasFeature(cpu, .avx512bf16)) {
cpu.model = &Target.x86.cpu.cooperlake;
return;
} else if(hasFeature(cpu, .avx512vnni)) {
cpu.model = &Target.x86.cpu.cascadelake;
return;
} else {
cpu.model = &Target.x86.cpu.skylake_avx512;
return;
}
},
0x66 => {
cpu.model = &Target.x86.cpu.cannonlake;
return;
},
0x7d, 0x7e => {
cpu.model = &Target.x86.cpu.icelake_client;
return;
},
0x6a, 0x6c => {
cpu.model = &Target.x86.cpu.icelake_server;
return;
},
0x1c, 0x26, 0x27, 0x35, 0x36 => {
cpu.model = &Target.x86.cpu.bonnell;
return;
},
0x37, 0x4a, 0x4d, 0x5a, 0x5d, 0x4c => {
cpu.model = &Target.x86.cpu.silvermont;
return;
},
0x5c, 0x5f => {
cpu.model = &Target.x86.cpu.goldmont;
return;
},
0x7a => {
cpu.model = &Target.x86.cpu.goldmont_plus;
return;
},
0x86 => {
cpu.model = &Target.x86.cpu.tremont;
return;
},
0x57 => {
cpu.model = &Target.x86.cpu.knl;
return;
},
0x85 => {
cpu.model = &Target.x86.cpu.knm;
return;
},
else => {
// Unknown, try to guess.
// TODO detect tigerlake host
if(hasFeature(cpu, .avx512vp2intersect)) {
// TODO no tigerlake entry in Target.x86.cpu
//cpu.model = &Target.x86.cpu.tigerlake;
cpu.model = &Target.x86.cpu.nehalem;
return;
}
if(hasFeature(cpu, .avx512vbmi2)) {
cpu.model = &Target.x86.cpu.icelake_client;
return;
}
if(hasFeature(cpu, .avx512vbmi)) {
cpu.model = &Target.x86.cpu.cannonlake;
return;
}
if(hasFeature(cpu, .avx512bf16)) {
cpu.model = &Target.x86.cpu.cooperlake;
return;
}
if(hasFeature(cpu, .avx512vnni)) {
cpu.model = &Target.x86.cpu.cascadelake;
return;
}
if(hasFeature(cpu, .avx512vl)) {
cpu.model = &Target.x86.cpu.skylake_avx512;
return;
}
if(hasFeature(cpu, .avx512er)) {
cpu.model = &Target.x86.cpu.knl;
return;
}
if(hasFeature(cpu, .clflushopt)) {
if(hasFeature(cpu, .sha)) {
cpu.model = &Target.x86.cpu.goldmont;
return;
} else {
cpu.model = &Target.x86.cpu.skylake;
return;
}
}
if(hasFeature(cpu, .adx)) {
cpu.model = &Target.x86.cpu.broadwell;
return;
}
if(hasFeature(cpu, .avx2)) {
cpu.model = &Target.x86.cpu.haswell;
return;
}
if(hasFeature(cpu, .avx)) {
cpu.model = &Target.x86.cpu.sandybridge;
return;
}
if(hasFeature(cpu, .sse4_2)) {
if(hasFeature(cpu, .movbe)) {
cpu.model = &Target.x86.cpu.silvermont;
return;
} else {
cpu.model = &Target.x86.cpu.nehalem;
return;
}
}
if(hasFeature(cpu, .sse4_1)) {
cpu.model = &Target.x86.cpu.penryn;
return;
}
if(hasFeature(cpu, .sse3)) {
if(hasFeature(cpu, .movbe)) {
cpu.model = &Target.x86.cpu.bonnell;
return;
} else {
cpu.model = &Target.x86.cpu.core2;
return;
}
}
if(hasFeature(cpu, .@"64bit")) {
cpu.model = &Target.x86.cpu.core2;
return;
}
if(hasFeature(cpu, .sse3)) {
cpu.model = &Target.x86.cpu.yonah;
return;
}
if(hasFeature(cpu, .sse2)) {
cpu.model = &Target.x86.cpu.pentium_m;
return;
}
if(hasFeature(cpu, .sse)) {
cpu.model = &Target.x86.cpu.pentium3;
return;
}
if(hasFeature(cpu, .mmx)) {
cpu.model = &Target.x86.cpu.pentium2;
return;
}
cpu.model = &Target.x86.cpu.pentiumpro;
return;
},
}
},
15 => {
if(hasFeature(cpu, .@"64bit")) {
cpu.model = &Target.x86.cpu.nocona;
return;
}
if(hasFeature(cpu, .sse3)) {
cpu.model = &Target.x86.cpu.prescott;
return;
}
cpu.model = &Target.x86.cpu.pentium4;
return;
},
else => {
cpu.model = &Target.x86.cpu.generic;
return;
}
}
}
fn detectAMDProcessor(cpu: *Target.Cpu, family: u32, model: u32) void {
// AMD's cpuid information is less than optimal for determining a CPU model.
// This is very unscientific, and not necessarily correct.
switch(family) {
4 => {
cpu.model = &Target.x86.cpu._i486;
return;
},
5 => {
cpu.model = &Target.x86.cpu.pentium;
switch(model) {
6, 7 => {
cpu.model = &Target.x86.cpu.k6;
return;
},
8 => {
cpu.model = &Target.x86.cpu.k6_2;
return;
},
9, 13 => {
cpu.model = &Target.x86.cpu.k6_3;
return;
},
10 => {
cpu.model = &Target.x86.cpu.geode;
return;
},
else => {},
}
return;
},
6 => {
if(hasFeature(cpu, .sse)) {
cpu.model = &Target.x86.cpu.athlon_xp;
return;
}
cpu.model = &Target.x86.cpu.athlon;
return;
},
15 => {
if(hasFeature(cpu, .sse3)) {
cpu.model = &Target.x86.cpu.k8_sse3;
return;
}
cpu.model = &Target.x86.cpu.k8;
return;
},
16 => {
cpu.model = &Target.x86.cpu.amdfam10;
return;
},
20 => {
cpu.model = &Target.x86.cpu.btver1;
return;
},
21 => {
cpu.model = &Target.x86.cpu.bdver1;
if(model >= 0x60 and model <= 0x7f) {
cpu.model = &Target.x86.cpu.bdver4;
return;
}
if(model >= 0x30 and model <= 0x3f) {
cpu.model = &Target.x86.cpu.bdver3;
return;
}
if((model >= 0x10 and model <= 0x1f) or model == 0x02) {
cpu.model = &Target.x86.cpu.bdver2;
return;
}
return;
},
22 => {
cpu.model = &Target.x86.cpu.btver2;
return;
},
23 => {
cpu.model = &Target.x86.cpu.znver1;
if((model >= 0x30 and model <= 0x3f) or model == 0x71) {
cpu.model = &Target.x86.cpu.znver2;
return;
}
return;
},
else => {
cpu.model = &Target.x86.cpu.generic;
return;
}
}
}
fn detectNativeFeatures(cpu: *Target.Cpu) void {
var leaf = cpuid(0, 0);
const max_level = leaf.eax;
leaf = cpuid(1, 0);
setFeature(cpu, .cx8, bit(leaf.edx, 8));
setFeature(cpu, .cx8, bit(leaf.edx, 8));
setFeature(cpu, .cmov, bit(leaf.edx, 15));
setFeature(cpu, .mmx, bit(leaf.edx, 23));
setFeature(cpu, .fxsr, bit(leaf.edx, 24));
setFeature(cpu, .sse, bit(leaf.edx, 25));
setFeature(cpu, .sse2, bit(leaf.edx, 26));
setFeature(cpu, .sse3, bit(leaf.ecx, 0));
setFeature(cpu, .pclmul, bit(leaf.ecx, 1));
setFeature(cpu, .ssse3, bit(leaf.ecx, 9));
setFeature(cpu, .cx16, bit(leaf.ecx, 13));
setFeature(cpu, .sse4_1, bit(leaf.ecx, 19));
setFeature(cpu, .sse4_2, bit(leaf.ecx, 20));
setFeature(cpu, .movbe, bit(leaf.ecx, 22));
setFeature(cpu, .popcnt, bit(leaf.ecx, 23));
setFeature(cpu, .aes, bit(leaf.ecx, 25));
setFeature(cpu, .rdrnd, bit(leaf.ecx, 30));
const has_avx_save = bit(leaf.ecx, 27) and
bit(leaf.ecx, 28) and
((leaf.eax & 0x6) == 0x6);
// Darwin lazily saves the AVX512 context on first use: trust that the OS will
// save the AVX512 context if we use AVX512 instructions, even the bit is not
// set right now.
const has_avx512_save = switch(Target.current.isDarwin()) {
true => true,
false => has_avx_save and ((leaf.eax & 0xE0) == 0xE0),
};
setFeature(cpu, .avx, has_avx_save);
setFeature(cpu, .fma, has_avx_save and bit(leaf.ecx, 12));
// Only enable XSAVE if OS has enabled support for saving YMM state.
setFeature(cpu, .xsave, has_avx_save and bit(leaf.ecx, 26));
setFeature(cpu, .f16c, has_avx_save and bit(leaf.ecx, 29));
leaf = cpuid(0x80000000, 0);
const max_ext_level = leaf.eax;
if(max_ext_level >= 0x80000001) {
leaf = cpuid(0x80000001, 0);
setFeature(cpu, .sahf, bit(leaf.ecx, 0));
setFeature(cpu, .lzcnt, bit(leaf.ecx, 5));
setFeature(cpu, .sse4a, bit(leaf.ecx, 6));
setFeature(cpu, .prfchw, bit(leaf.ecx, 8));
setFeature(cpu, .xop, bit(leaf.ecx, 11) and has_avx_save);
setFeature(cpu, .lwp, bit(leaf.ecx, 15));
setFeature(cpu, .fma4, bit(leaf.ecx, 16) and has_avx_save);
setFeature(cpu, .tbm, bit(leaf.ecx, 21));
setFeature(cpu, .mwaitx, bit(leaf.ecx, 29));
setFeature(cpu, .@"64bit", bit(leaf.edx, 29));
} else {
for([_]Target.x86.Feature{
.sahf, .lzcnt, .sse4a, .prfchw, .xop,
.lwp, .fma4, .tbm, .mwaitx, .@"64bit"
}) |feat| {
setFeature(cpu, feat, false);
}
}
// Misc. memory-related features.
if(max_ext_level >= 0x80000008) {
leaf = cpuid(80000008, 0);
setFeature(cpu, .clzero, bit(leaf.ebx, 0));
setFeature(cpu, .wbnoinvd, bit(leaf.ebx, 9));
} else {
for([_]Target.x86.Feature{ .clzero, .wbnoinvd }) |feat| {
setFeature(cpu, feat, false);
}
}
if(max_level >= 7) {
leaf = cpuid(0x7, 0);
setFeature(cpu, .fsgsbase, bit(leaf.ebx, 0));
setFeature(cpu, .sgx, bit(leaf.ebx, 2));
setFeature(cpu, .bmi, bit(leaf.ebx, 3));
// AVX2 is only supported if we have the OS save support from AVX.
setFeature(cpu, .avx2, bit(leaf.ebx, 5) and has_avx_save);
setFeature(cpu, .bmi2, bit(leaf.ebx, 8));
setFeature(cpu, .invpcid, bit(leaf.ebx, 10));
setFeature(cpu, .rtm, bit(leaf.ebx, 11));
// AVX512 is only supported if the OS supports the context save for it.
setFeature(cpu, .avx512f, bit(leaf.ebx, 16) and has_avx512_save);
setFeature(cpu, .avx512dq, bit(leaf.ebx, 17) and has_avx512_save);
setFeature(cpu, .rdseed, bit(leaf.ebx, 18));
setFeature(cpu, .adx, bit(leaf.ebx, 19));
setFeature(cpu, .avx512ifma, bit(leaf.ebx, 21) and has_avx512_save);
setFeature(cpu, .clflushopt, bit(leaf.ebx, 23));
setFeature(cpu, .clwb, bit(leaf.ebx, 24));
setFeature(cpu, .avx512pf, bit(leaf.ebx, 26) and has_avx512_save);
setFeature(cpu, .avx512er, bit(leaf.ebx, 27) and has_avx512_save);
setFeature(cpu, .avx512cd, bit(leaf.ebx, 28) and has_avx512_save);
setFeature(cpu, .sha, bit(leaf.ebx, 29));
setFeature(cpu, .avx512bw, bit(leaf.ebx, 30) and has_avx512_save);
setFeature(cpu, .avx512vl, bit(leaf.ebx, 31) and has_avx512_save);
setFeature(cpu, .prefetchwt1, bit(leaf.ecx, 0));
setFeature(cpu, .avx512vbmi, bit(leaf.ecx, 1) and has_avx512_save);
setFeature(cpu, .pku, bit(leaf.ecx, 4));
setFeature(cpu, .waitpkg, bit(leaf.ecx, 5));
setFeature(cpu, .avx512vbmi2, bit(leaf.ecx, 6) and has_avx512_save);
setFeature(cpu, .shstk, bit(leaf.ecx, 7));
setFeature(cpu, .gfni, bit(leaf.ecx, 8));
setFeature(cpu, .vaes, bit(leaf.ecx, 9) and has_avx_save);
setFeature(cpu, .vpclmulqdq, bit(leaf.ecx, 10) and has_avx_save);
setFeature(cpu, .avx512vnni, bit(leaf.ecx, 11) and has_avx512_save);
setFeature(cpu, .avx512bitalg, bit(leaf.ecx, 12) and has_avx512_save);
setFeature(cpu, .avx512vpopcntdq, bit(leaf.ecx, 14) and has_avx512_save);
setFeature(cpu, .avx512vp2intersect, bit(leaf.edx, 8) and has_avx512_save);
setFeature(cpu, .rdpid, bit(leaf.ecx, 22));
setFeature(cpu, .cldemote, bit(leaf.ecx, 25));
setFeature(cpu, .movdiri, bit(leaf.ecx, 27));
setFeature(cpu, .movdir64b, bit(leaf.ecx, 28));
setFeature(cpu, .enqcmd, bit(leaf.ecx, 29));
// There are two CPUID leafs which information associated with the pconfig
// instruction:
// EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
// bit of EDX), while the EAX=0x1b leaf returns information on the
// availability of specific pconfig leafs.
// The target feature here only refers to the the first of these two.
// Users might need to check for the availability of specific pconfig
// leaves using cpuid, since that information is ignored while
// detecting features using the "-march=native" flag.
// For more info, see X86 ISA docs.
setFeature(cpu, .pconfig, bit(leaf.edx, 18));
// TODO I feel unsure about this check.
// It doesn't really seem to check for 7.1, just for 7.
// Is this a sound assumption to make?
// Note that this is what other implementations do, so I kind of trust it.
const has_leaf_7_1 = max_level >= 7;
if(has_leaf_7_1) {
leaf = cpuid(0x7, 0x1);
setFeature(cpu, .avx512bf16, bit(leaf.eax, 5) and has_avx512_save);
} else {
setFeature(cpu, .avx512bf16, false);
}
} else {
for([_]Target.x86.Feature{
.fsgsbase, .sgx, .bmi, .avx2,
.bmi2, .invpcid, .rtm, .avx512f,
.avx512dq, .rdseed, .adx, .avx512ifma,
.clflushopt, .clwb, .avx512pf, .avx512er,
.avx512cd, .sha, .avx512bw, .avx512vl,
.prefetchwt1, .avx512vbmi, .pku, .waitpkg,
.avx512vbmi2, .shstk, .gfni, .vaes,
.vpclmulqdq, .avx512vnni, .avx512bitalg, .avx512vpopcntdq,
.avx512vp2intersect, .rdpid, .cldemote, .movdiri,
.movdir64b, .enqcmd, .pconfig, .avx512bf16,
}) |feat| {
setFeature(cpu, feat, false);
}
}
if(max_level >= 0xD and has_avx_save) {
leaf = cpuid(0xD, 0x1);
// Only enable XSAVE if OS has enabled support for saving YMM state.
setFeature(cpu, .xsaveopt, bit(leaf.eax, 0));
setFeature(cpu, .xsavec, bit(leaf.eax, 1));
setFeature(cpu, .xsaves, bit(leaf.eax, 3));
} else {
for([_]Target.x86.Feature{ .xsaveopt, .xsavec, .xsaves }) |feat| {
setFeature(cpu, feat, false);
}
}
if(max_level >= 0x14) {
leaf = cpuid(0x14, 0);
setFeature(cpu, .ptwrite, bit(leaf.ebx, 4));
} else {
setFeature(cpu, .ptwrite, false);
}
}
const CpuidLeaf = packed struct {
eax: u32,
ebx: u32,
ecx: u32,
edx: u32,
};
fn cpuid(leaf_id: u32, subid: u32) CpuidLeaf {
// Workaround for https://github.com/ziglang/zig/issues/215
// Inline assembly in zig only supports one output,
// so we pass a pointer to the struct.
var cpuid_leaf = CpuidLeaf {.eax = 0, .ebx = 0, .ecx = 0, .edx = 0};
var leaf_ptr = &cpuid_leaf;
switch(Target.current.cpu.arch) {
.i386 => {
_ = asm volatile (
\\ cpuid
\\ movl %%eax, (%%edi)
\\ movl %%ebx, 4(%%edi)
\\ movl %%ecx, 8(%%edi)
\\ movl %%edx, 12(%%edi)
: :
[leaf_id] "{eax}" (leaf_id),
[subid] "{ecx}" (subid),
[leaf_ptr] "{edi}" (leaf_ptr),
: "eax", "ebx", "ecx", "edx"
);
},
.x86_64 => {
_ = asm volatile (
\\ cpuid
\\ movl %%eax, (%%rdi)
\\ movl %%ebx, 4(%%rdi)
\\ movl %%ecx, 8(%%rdi)
\\ movl %%edx, 12(%%rdi)
: :
[leaf_id] "{eax}" (leaf_id),
[subid] "{ecx}" (subid),
[leaf_ptr] "{rdi}" (leaf_ptr),
: "eax", "ebx", "ecx", "edx"
);
},
else => unreachable,
}
return cpuid_leaf;
}
// Read control register 0 (XCR0). Used to detect features such as AVX.
fn getXCR0() u32 {
return asm (
\\ .byte 0x0F, 0x01, 0xD0
: [ret] "={eax}" (-> u32)
: [number] "{eax}" (@as(u32, 0)),
[number] "{edx}" (@as(u32, 0)),
[number] "{ecx}" (@as(u32, 0)),
:
);
}

View file

@ -1154,7 +1154,8 @@ fn enumInt(comptime Enum: type, int: c_int) Enum {
fn crossTargetToTarget(cross_target: CrossTarget, dynamic_linker_ptr: *?[*:0]u8) !Target { fn crossTargetToTarget(cross_target: CrossTarget, dynamic_linker_ptr: *?[*:0]u8) !Target {
var info = try std.zig.system.NativeTargetInfo.detect(std.heap.c_allocator, cross_target); var info = try std.zig.system.NativeTargetInfo.detect(std.heap.c_allocator, cross_target);
if (cross_target.cpu_arch == null or cross_target.cpu_model == .native) { if ((cross_target.cpu_arch == null or cross_target.cpu_model == .native) and
(Target.current.cpu.arch != .i386 and Target.current.cpu.arch != .x86_64)) {
// TODO We want to just use detected_info.target but implementing // TODO We want to just use detected_info.target but implementing
// CPU model & feature detection is todo so here we rely on LLVM. // CPU model & feature detection is todo so here we rely on LLVM.
const llvm = @import("llvm.zig"); const llvm = @import("llvm.zig");