spirv: make IdResult an enum

This commit is contained in:
Robin Voetter 2024-03-11 23:39:23 +01:00
parent 9b058117f0
commit e566158acf
No known key found for this signature in database
6 changed files with 618 additions and 19 deletions

View file

@ -5158,7 +5158,7 @@ const DeclGen = struct {
const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len]; const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len];
extra_index = case.end + case.data.items_len + case_body.len; extra_index = case.end + case.data.items_len + case_body.len;
const label = IdRef{ .id = @intCast(first_case_label.id + case_i) }; const label: IdRef = @enumFromInt(@intFromEnum(first_case_label) + case_i);
for (items) |item| { for (items) |item| {
const value = (try self.air.value(item, mod)) orelse unreachable; const value = (try self.air.value(item, mod)) orelse unreachable;
@ -5172,7 +5172,7 @@ const DeclGen = struct {
else => unreachable, else => unreachable,
}; };
const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) { const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) {
1 => .{ .uint32 = @as(u32, @intCast(int_val)) }, 1 => .{ .uint32 = @intCast(int_val) },
2 => .{ .uint64 = int_val }, 2 => .{ .uint64 = int_val },
else => unreachable, else => unreachable,
}; };
@ -5197,7 +5197,7 @@ const DeclGen = struct {
const case_body: []const Air.Inst.Index = @ptrCast(self.air.extra[case.end + items.len ..][0..case.data.body_len]); const case_body: []const Air.Inst.Index = @ptrCast(self.air.extra[case.end + items.len ..][0..case.data.body_len]);
extra_index = case.end + case.data.items_len + case_body.len; extra_index = case.end + case.data.items_len + case_body.len;
const label = IdResult{ .id = @intCast(first_case_label.id + case_i) }; const label: IdResult = @enumFromInt(@intFromEnum(first_case_label) + case_i);
try self.beginSpvBlock(label); try self.beginSpvBlock(label);

View file

@ -215,12 +215,12 @@ pub fn deinit(self: *Module) void {
pub fn allocId(self: *Module) spec.IdResult { pub fn allocId(self: *Module) spec.IdResult {
defer self.next_result_id += 1; defer self.next_result_id += 1;
return .{ .id = self.next_result_id }; return @enumFromInt(self.next_result_id);
} }
pub fn allocIds(self: *Module, n: u32) spec.IdResult { pub fn allocIds(self: *Module, n: u32) spec.IdResult {
defer self.next_result_id += n; defer self.next_result_id += n;
return .{ .id = self.next_result_id }; return @enumFromInt(self.next_result_id);
} }
pub fn idBound(self: Module) Word { pub fn idBound(self: Module) Word {

View file

@ -123,7 +123,7 @@ fn writeOperands(section: *Section, comptime Operands: type, operands: Operands)
pub fn writeOperand(section: *Section, comptime Operand: type, operand: Operand) void { pub fn writeOperand(section: *Section, comptime Operand: type, operand: Operand) void {
switch (Operand) { switch (Operand) {
spec.IdResult => section.writeWord(operand.id), spec.IdResult => section.writeWord(@intFromEnum(operand)),
spec.LiteralInteger => section.writeWord(operand), spec.LiteralInteger => section.writeWord(operand),
@ -138,9 +138,9 @@ pub fn writeOperand(section: *Section, comptime Operand: type, operand: Operand)
// instruction in which it is used. // instruction in which it is used.
spec.LiteralSpecConstantOpInteger => section.writeWord(@intFromEnum(operand.opcode)), spec.LiteralSpecConstantOpInteger => section.writeWord(@intFromEnum(operand.opcode)),
spec.PairLiteralIntegerIdRef => section.writeWords(&.{ operand.value, operand.label.id }), spec.PairLiteralIntegerIdRef => section.writeWords(&.{ operand.value, @enumFromInt(operand.label) }),
spec.PairIdRefLiteralInteger => section.writeWords(&.{ operand.target.id, operand.member }), spec.PairIdRefLiteralInteger => section.writeWords(&.{ @intFromEnum(operand.target), operand.member }),
spec.PairIdRefIdRef => section.writeWords(&.{ operand[0].id, operand[1].id }), spec.PairIdRefIdRef => section.writeWords(&.{ @intFromEnum(operand[0]), @intFromEnum(operand[1]) }),
else => switch (@typeInfo(Operand)) { else => switch (@typeInfo(Operand)) {
.Enum => section.writeWord(@intFromEnum(operand)), .Enum => section.writeWord(@intFromEnum(operand)),
@ -338,8 +338,8 @@ test "SPIR-V Section emit() - simple" {
defer section.deinit(std.testing.allocator); defer section.deinit(std.testing.allocator);
try section.emit(std.testing.allocator, .OpUndef, .{ try section.emit(std.testing.allocator, .OpUndef, .{
.id_result_type = .{ .id = 0 }, .id_result_type = @enumFromInt(0),
.id_result = .{ .id = 1 }, .id_result = @enumFromInt(1),
}); });
try testing.expectEqualSlices(Word, &.{ try testing.expectEqualSlices(Word, &.{
@ -356,7 +356,7 @@ test "SPIR-V Section emit() - string" {
try section.emit(std.testing.allocator, .OpSource, .{ try section.emit(std.testing.allocator, .OpSource, .{
.source_language = .Unknown, .source_language = .Unknown,
.version = 123, .version = 123,
.file = .{ .id = 456 }, .file = @enumFromInt(256),
.source = "pub fn main() void {}", .source = "pub fn main() void {}",
}); });
@ -381,8 +381,8 @@ test "SPIR-V Section emit() - extended mask" {
defer section.deinit(std.testing.allocator); defer section.deinit(std.testing.allocator);
try section.emit(std.testing.allocator, .OpLoopMerge, .{ try section.emit(std.testing.allocator, .OpLoopMerge, .{
.merge_block = .{ .id = 10 }, .merge_block = @enumFromInt(10),
.continue_target = .{ .id = 20 }, .continue_target = @enumFromInt(20),
.loop_control = .{ .loop_control = .{
.Unroll = true, .Unroll = true,
.DependencyLength = .{ .DependencyLength = .{
@ -405,7 +405,7 @@ test "SPIR-V Section emit() - extended union" {
defer section.deinit(std.testing.allocator); defer section.deinit(std.testing.allocator);
try section.emit(std.testing.allocator, .OpExecutionMode, .{ try section.emit(std.testing.allocator, .OpExecutionMode, .{
.entry_point = .{ .id = 888 }, .entry_point = @enumFromInt(888),
.mode = .{ .mode = .{
.LocalSize = .{ .x_size = 4, .y_size = 8, .z_size = 16 }, .LocalSize = .{ .x_size = 4, .y_size = 8, .z_size = 16 },
}, },

View file

@ -12,8 +12,9 @@ pub const Version = packed struct(Word) {
}; };
pub const Word = u32; pub const Word = u32;
pub const IdResult = struct { pub const IdResult = enum(Word) {
id: Word, none,
_,
}; };
pub const IdResultType = IdResult; pub const IdResultType = IdResult;
pub const IdRef = IdResult; pub const IdRef = IdResult;

View file

@ -0,0 +1,597 @@
const std = @import("std");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.spirv_parse);
const spec = @import("../../codegen/spirv/spec.zig");
const Opcode = spec.Opcode;
const Word = spec.Word;
const InstructionSet = spec.InstructionSet;
const ResultId = spec.IdResult;
const BinaryModule = @This();
pub const header_words = 5;
/// The module SPIR-V version.
version: spec.Version,
/// The generator magic number.
generator_magic: u32,
/// The result-id bound of this SPIR-V module.
id_bound: u32,
/// The instructions of this module. This does not contain the header.
instructions: []const Word,
/// Maps OpExtInstImport result-ids to their InstructionSet.
ext_inst_map: std.AutoHashMapUnmanaged(ResultId, InstructionSet),
/// This map contains the width of arithmetic types (OpTypeInt and
/// OpTypeFloat). We need this information to correctly parse the operands
/// of Op(Spec)Constant and OpSwitch.
arith_type_width: std.AutoHashMapUnmanaged(ResultId, u16),
pub fn deinit(self: *BinaryModule, a: Allocator) void {
self.ext_inst_map.deinit(a);
self.arith_type_width.deinit(a);
self.* = undefined;
}
pub fn iterateInstructions(self: BinaryModule) Instruction.Iterator {
return Instruction.Iterator.init(self.instructions);
}
/// Errors that can be raised when the module is not correct.
/// Note that the parser doesn't validate SPIR-V modules by a
/// long shot. It only yields errors that critically prevent
/// further analysis of the module.
pub const ParseError = error{
/// Raised when the module doesn't start with the SPIR-V magic.
/// This usually means that the module isn't actually SPIR-V.
InvalidMagic,
/// Raised when the module has an invalid "physical" format:
/// For example when the header is incomplete, or an instruction
/// has an illegal format.
InvalidPhysicalFormat,
/// OpExtInstImport was used with an unknown extension string.
InvalidExtInstImport,
/// The module had an instruction with an invalid (unknown) opcode.
InvalidOpcode,
/// An instruction's operands did not conform to the SPIR-V specification
/// for that instruction.
InvalidOperands,
/// A result-id was declared more than once.
DuplicateId,
/// Some ID did not resolve.
InvalidId,
/// Parser ran out of memory.
OutOfMemory,
};
pub const Instruction = struct {
pub const Iterator = struct {
words: []const Word,
index: usize = 0,
offset: usize = 0,
pub fn init(words: []const Word) Iterator {
return .{ .words = words };
}
pub fn next(self: *Iterator) ?Instruction {
if (self.offset >= self.words.len) return null;
const instruction_len = self.words[self.offset] >> 16;
defer self.offset += instruction_len;
defer self.index += 1;
assert(instruction_len != 0 and self.offset < self.words.len); // Verified in BinaryModule.parse.
return Instruction{
.opcode = @enumFromInt(self.words[self.offset] & 0xFFFF),
.index = self.index,
.offset = self.offset,
.operands = self.words[self.offset..][1..instruction_len],
};
}
};
/// The opcode for this instruction.
opcode: Opcode,
/// The instruction's index.
index: usize,
/// The instruction's word offset in the module.
offset: usize,
/// The raw (unparsed) operands for this instruction.
operands: []const Word,
};
/// This struct is used to return information about
/// a module's functions - entry points, functions,
/// list of callees.
pub const FunctionInfo = struct {
/// Information that is gathered about a particular function.
pub const Fn = struct {
/// The word-offset of the first word (of the OpFunction instruction)
/// of this instruction.
begin_offset: usize,
/// The past-end offset of the end (including operands) of the last
/// instruction of the function.
end_offset: usize,
/// The index of the first callee in `callee_store`.
first_callee: usize,
/// The module offset of the OpTypeFunction instruction corresponding
/// to this function.
/// We use an offset so that we don't need to keep a separate map.
type_offset: usize,
};
/// Maps function result-id -> Function information structure.
functions: std.AutoArrayHashMapUnmanaged(ResultId, Fn),
/// List of entry points in this module. Contains OpFunction result-ids.
entry_points: []const ResultId,
/// For each function, a list of function result-ids that it calls.
callee_store: []const ResultId,
pub fn deinit(self: *FunctionInfo, a: Allocator) void {
self.functions.deinit(a);
a.free(self.entry_points);
a.free(self.callee_store);
self.* = undefined;
}
/// Fetch the list of callees per function. Guaranteed to contain only unique IDs.
pub fn callees(self: FunctionInfo, fn_id: ResultId) []const ResultId {
const fn_index = self.functions.getIndex(fn_id).?;
const values = self.functions.values();
const first_callee = values[fn_index].first_callee;
if (fn_index == values.len - 1) {
return self.callee_store[first_callee..];
} else {
const next_first_callee = values[fn_index + 1].first_callee;
return self.callee_store[first_callee..next_first_callee];
}
}
/// Returns a topological ordering of the functions: For each item
/// in the returned list of OpFunction result-ids, it is guaranteed that
/// the callees have a lower index. Note that SPIR-V does not support
/// any recursion, so this always works.
pub fn topologicalSort(self: FunctionInfo, a: Allocator) ![]const ResultId {
var sort = std.ArrayList(ResultId).init(a);
defer sort.deinit();
var seen = try std.DynamicBitSetUnmanaged.initEmpty(a, self.functions.count());
defer seen.deinit(a);
var stack = std.ArrayList(ResultId).init(a);
defer stack.deinit();
for (self.functions.keys()) |id| {
try self.topologicalSortStep(id, &sort, &seen);
}
return try sort.toOwnedSlice();
}
fn topologicalSortStep(
self: FunctionInfo,
id: ResultId,
sort: *std.ArrayList(ResultId),
seen: *std.DynamicBitSetUnmanaged,
) !void {
const fn_index = self.functions.getIndex(id) orelse {
log.err("function calls invalid callee-id {}", .{@intFromEnum(id)});
return error.InvalidId;
};
if (seen.isSet(fn_index)) {
return;
}
seen.set(fn_index);
for (self.callees(id)) |callee| {
try self.topologicalSortStep(callee, sort, seen);
}
try sort.append(id);
}
};
/// This parser contains information (acceleration tables)
/// that can be persisted across different modules. This is
/// used to initialize the module, and is also used when
/// further analyzing it.
pub const Parser = struct {
/// The allocator used to allocate this parser's structures,
/// and also the structures of any parsed module.
a: Allocator,
/// Maps (instruction set, opcode) => instruction index (for instruction set)
opcode_table: std.AutoHashMapUnmanaged(u32, u16) = .{},
pub fn init(a: Allocator) !Parser {
var self = Parser{
.a = a,
};
errdefer self.deinit();
inline for (std.meta.tags(InstructionSet)) |set| {
const instructions = set.instructions();
try self.opcode_table.ensureUnusedCapacity(a, @intCast(instructions.len));
for (instructions, 0..) |inst, i| {
// Note: Some instructions may alias another. In this case we don't really care
// which one is first: they all (should) have the same operands anyway. Just pick
// the first, which is usually the core, KHR or EXT variant.
const entry = self.opcode_table.getOrPutAssumeCapacity(mapSetAndOpcode(set, @intCast(inst.opcode)));
if (!entry.found_existing) {
entry.value_ptr.* = @intCast(i);
}
}
}
return self;
}
pub fn deinit(self: *Parser) void {
self.opcode_table.deinit(self.a);
}
fn mapSetAndOpcode(set: InstructionSet, opcode: u16) u32 {
return (@as(u32, @intFromEnum(set)) << 16) | opcode;
}
pub fn parse(self: *Parser, module: []const u32) ParseError!BinaryModule {
if (module[0] != spec.magic_number) {
return error.InvalidMagic;
} else if (module.len < header_words) {
log.err("module only has {}/{} header words", .{ module.len, header_words });
return error.InvalidPhysicalFormat;
}
var binary = BinaryModule{
.version = @bitCast(module[1]),
.generator_magic = module[2],
.id_bound = module[3],
.instructions = module[header_words..],
.ext_inst_map = .{},
.arith_type_width = .{},
};
// First pass through the module to verify basic structure and
// to gather some initial stuff for more detailed analysis.
// We want to check some stuff that Instruction.Iterator is no good for,
// so just iterate manually.
var offset: usize = 0;
while (offset < binary.instructions.len) {
const len = binary.instructions[offset] >> 16;
if (len == 0 or len + offset > binary.instructions.len) {
log.err("invalid instruction format: len={}, end={}, module len={}", .{ len, len + offset, binary.instructions.len });
return error.InvalidPhysicalFormat;
}
defer offset += len;
// We can't really efficiently use non-exhaustive enums here, because we would
// need to manually write out all valid cases. Since we have this map anyway, just
// use that.
const opcode_num: u16 = @truncate(binary.instructions[offset]);
const index = self.opcode_table.get(mapSetAndOpcode(.core, opcode_num)) orelse {
log.err("invalid opcode for core set: {}", .{opcode_num});
return error.InvalidOpcode;
};
const opcode: Opcode = @enumFromInt(opcode_num);
const operands = binary.instructions[offset..][1..len];
switch (opcode) {
.OpExtInstImport => {
const set_name = std.mem.sliceTo(std.mem.sliceAsBytes(operands[1..]), 0);
const set = std.meta.stringToEnum(InstructionSet, set_name) orelse {
log.err("invalid instruction set '{s}'", .{set_name});
return error.InvalidExtInstImport;
};
if (set == .core) return error.InvalidExtInstImport;
try binary.ext_inst_map.put(self.a, @enumFromInt(operands[0]), set);
},
.OpTypeInt, .OpTypeFloat => {
const entry = try binary.arith_type_width.getOrPut(self.a, @enumFromInt(operands[0]));
if (entry.found_existing) return error.DuplicateId;
entry.value_ptr.* = std.math.cast(u16, operands[1]) orelse return error.InvalidOperands;
},
else => {},
}
// OpSwitch takes a value as argument, not an OpType... hence we need to populate arith_type_width
// with ALL operations that return an int or float.
const proper_operands = InstructionSet.core.instructions()[index].operands;
if (proper_operands.len >= 2 and
proper_operands[0].kind == .IdResultType and
proper_operands[1].kind == .IdResult)
{
if (operands.len < 2) return error.InvalidOperands;
if (binary.arith_type_width.get(@enumFromInt(operands[0]))) |width| {
const entry = try binary.arith_type_width.getOrPut(self.a, @enumFromInt(operands[1]));
if (entry.found_existing) return error.DuplicateId;
entry.value_ptr.* = width;
}
}
}
return binary;
}
pub fn parseFunctionInfo(self: *Parser, binary: BinaryModule) ParseError!FunctionInfo {
var entry_points = std.AutoArrayHashMap(ResultId, void).init(self.a);
defer entry_points.deinit();
var functions = std.AutoArrayHashMap(ResultId, FunctionInfo.Fn).init(self.a);
errdefer functions.deinit();
var fn_ty_decls = std.AutoHashMap(ResultId, usize).init(self.a);
defer fn_ty_decls.deinit();
var calls = std.AutoArrayHashMap(ResultId, void).init(self.a);
defer calls.deinit();
var callee_store = std.ArrayList(ResultId).init(self.a);
defer callee_store.deinit();
var maybe_current_function: ?ResultId = null;
var begin: usize = undefined;
var fn_ty_id: ResultId = undefined;
var it = binary.iterateInstructions();
while (it.next()) |inst| {
switch (inst.opcode) {
.OpEntryPoint => {
const entry = try entry_points.getOrPut(@enumFromInt(inst.operands[1]));
if (entry.found_existing) return error.DuplicateId;
},
.OpTypeFunction => {
const entry = try fn_ty_decls.getOrPut(@enumFromInt(inst.operands[0]));
if (entry.found_existing) return error.DuplicateId;
entry.value_ptr.* = inst.offset;
},
.OpFunction => {
maybe_current_function = @enumFromInt(inst.operands[1]);
begin = inst.offset;
fn_ty_id = @enumFromInt(inst.operands[3]);
},
.OpFunctionCall => {
const callee: ResultId = @enumFromInt(inst.operands[2]);
try calls.put(callee, {});
},
.OpFunctionEnd => {
const current_function = maybe_current_function orelse {
log.err("encountered OpFunctionEnd without corresponding OpFunction", .{});
return error.InvalidPhysicalFormat;
};
const entry = try functions.getOrPut(current_function);
if (entry.found_existing) return error.DuplicateId;
const first_callee = callee_store.items.len;
try callee_store.appendSlice(calls.keys());
const type_offset = fn_ty_decls.get(fn_ty_id) orelse {
log.err("Invalid OpFunction type", .{});
return error.InvalidId;
};
entry.value_ptr.* = .{
.begin_offset = begin,
.end_offset = it.offset, // Use past-end offset
.first_callee = first_callee,
.type_offset = type_offset,
};
maybe_current_function = null;
calls.clearRetainingCapacity();
},
else => {},
}
}
if (maybe_current_function != null) {
log.err("final OpFunction does not have an OpFunctionEnd", .{});
return error.InvalidPhysicalFormat;
}
return FunctionInfo{
.functions = functions.unmanaged,
.entry_points = try self.a.dupe(ResultId, entry_points.keys()),
.callee_store = try callee_store.toOwnedSlice(),
};
}
/// Parse offsets in the instruction that contain result-ids.
/// Returned offsets are relative to inst.operands.
/// Returns in an arraylist to armortize allocations.
pub fn parseInstructionResultIds(
self: *Parser,
binary: BinaryModule,
inst: Instruction,
offsets: *std.ArrayList(u16),
) !void {
const index = self.opcode_table.get(mapSetAndOpcode(.core, @intFromEnum(inst.opcode))).?;
const operands = InstructionSet.core.instructions()[index].operands;
var offset: usize = 0;
switch (inst.opcode) {
.OpSpecConstantOp => {
assert(operands[0].kind == .IdResultType);
assert(operands[1].kind == .IdResult);
offset = try self.parseOperandsResultIds(binary, inst, operands[0..2], offset, offsets);
if (offset >= inst.operands.len) return error.InvalidPhysicalFormat;
const spec_opcode = std.math.cast(u16, inst.operands[offset]) orelse return error.InvalidPhysicalFormat;
const spec_index = self.opcode_table.get(mapSetAndOpcode(.core, spec_opcode)) orelse
return error.InvalidPhysicalFormat;
const spec_operands = InstructionSet.core.instructions()[spec_index].operands;
assert(spec_operands[0].kind == .IdResultType);
assert(spec_operands[1].kind == .IdResult);
offset = try self.parseOperandsResultIds(binary, inst, spec_operands[2..], offset + 1, offsets);
},
.OpExtInst => {
assert(operands[0].kind == .IdResultType);
assert(operands[1].kind == .IdResult);
offset = try self.parseOperandsResultIds(binary, inst, operands[0..2], offset, offsets);
if (offset + 1 >= inst.operands.len) return error.InvalidPhysicalFormat;
const set_id: ResultId = @enumFromInt(inst.operands[offset]);
const set = binary.ext_inst_map.get(set_id) orelse {
log.err("Invalid instruction set {}", .{@intFromEnum(set_id)});
return error.InvalidId;
};
const ext_opcode = std.math.cast(u16, inst.operands[offset + 1]) orelse return error.InvalidPhysicalFormat;
const ext_index = self.opcode_table.get(mapSetAndOpcode(set, ext_opcode)) orelse
return error.InvalidPhysicalFormat;
const ext_operands = set.instructions()[ext_index].operands;
offset = try self.parseOperandsResultIds(binary, inst, ext_operands, offset + 2, offsets);
},
else => {
offset = try self.parseOperandsResultIds(binary, inst, operands, offset, offsets);
},
}
if (offset != inst.operands.len) return error.InvalidPhysicalFormat;
}
fn parseOperandsResultIds(
self: *Parser,
binary: BinaryModule,
inst: Instruction,
operands: []const spec.Operand,
start_offset: usize,
offsets: *std.ArrayList(u16),
) !usize {
var offset = start_offset;
for (operands) |operand| {
offset = try self.parseOperandResultIds(binary, inst, operand, offset, offsets);
}
return offset;
}
fn parseOperandResultIds(
self: *Parser,
binary: BinaryModule,
inst: Instruction,
operand: spec.Operand,
start_offset: usize,
offsets: *std.ArrayList(u16),
) !usize {
var offset = start_offset;
switch (operand.quantifier) {
.variadic => while (offset < inst.operands.len) {
offset = try self.parseOperandKindResultIds(binary, inst, operand.kind, offset, offsets);
},
.optional => if (offset < inst.operands.len) {
offset = try self.parseOperandKindResultIds(binary, inst, operand.kind, offset, offsets);
},
.required => {
offset = try self.parseOperandKindResultIds(binary, inst, operand.kind, offset, offsets);
},
}
return offset;
}
fn parseOperandKindResultIds(
self: *Parser,
binary: BinaryModule,
inst: Instruction,
kind: spec.OperandKind,
start_offset: usize,
offsets: *std.ArrayList(u16),
) !usize {
var offset = start_offset;
if (offset >= inst.operands.len) return error.InvalidPhysicalFormat;
switch (kind.category()) {
.bit_enum => {
const mask = inst.operands[offset];
offset += 1;
for (kind.enumerants()) |enumerant| {
if ((mask & enumerant.value) != 0) {
for (enumerant.parameters) |param_kind| {
offset = try self.parseOperandKindResultIds(binary, inst, param_kind, offset, offsets);
}
}
}
},
.value_enum => {
const value = inst.operands[offset];
offset += 1;
for (kind.enumerants()) |enumerant| {
if (value == enumerant.value) {
for (enumerant.parameters) |param_kind| {
offset = try self.parseOperandKindResultIds(binary, inst, param_kind, offset, offsets);
}
break;
}
}
},
.id => {
const this_offset = std.math.cast(u16, offset) orelse return error.InvalidPhysicalFormat;
try offsets.append(this_offset);
offset += 1;
},
else => switch (kind) {
.LiteralInteger, .LiteralFloat => offset += 1,
.LiteralString => while (true) {
if (offset >= inst.operands.len) return error.InvalidPhysicalFormat;
const word = inst.operands[offset];
offset += 1;
if (word & 0xFF000000 == 0 or
word & 0x00FF0000 == 0 or
word & 0x0000FF00 == 0 or
word & 0x000000FF == 0)
{
break;
}
},
.LiteralContextDependentNumber => {
assert(inst.opcode == .OpConstant or inst.opcode == .OpSpecConstantOp);
const bit_width = binary.arith_type_width.get(@enumFromInt(inst.operands[0])) orelse {
log.err("invalid LiteralContextDependentNumber type {}", .{inst.operands[0]});
return error.InvalidId;
};
offset += switch (bit_width) {
1...32 => 1,
33...64 => 2,
else => unreachable,
};
},
.LiteralExtInstInteger => unreachable,
.LiteralSpecConstantOpInteger => unreachable,
.PairLiteralIntegerIdRef => { // Switch case
assert(inst.opcode == .OpSwitch);
const bit_width = binary.arith_type_width.get(@enumFromInt(inst.operands[0])) orelse {
log.err("invalid OpSwitch type {}", .{inst.operands[0]});
return error.InvalidId;
};
offset += switch (bit_width) {
1...32 => 1,
33...64 => 2,
else => unreachable,
};
const this_offset = std.math.cast(u16, offset) orelse return error.InvalidPhysicalFormat;
try offsets.append(this_offset);
offset += 1;
},
.PairIdRefLiteralInteger => {
const this_offset = std.math.cast(u16, offset) orelse return error.InvalidPhysicalFormat;
try offsets.append(this_offset);
offset += 2;
},
.PairIdRefIdRef => {
const a = std.math.cast(u16, offset) orelse return error.InvalidPhysicalFormat;
const b = std.math.cast(u16, offset + 1) orelse return error.InvalidPhysicalFormat;
try offsets.append(a);
try offsets.append(b);
offset += 2;
},
else => unreachable,
},
}
return offset;
}
};

View file

@ -154,8 +154,9 @@ fn render(writer: anytype, a: Allocator, registry: CoreRegistry, extensions: []c
\\}; \\};
\\ \\
\\pub const Word = u32; \\pub const Word = u32;
\\pub const IdResult = struct{ \\pub const IdResult = enum(Word) {
\\ id: Word, \\ none,
\\ _,
\\}; \\};
\\pub const IdResultType = IdResult; \\pub const IdResultType = IdResult;
\\pub const IdRef = IdResult; \\pub const IdRef = IdResult;