Merge branch 'master' into unmanaged-priority-queue-and-dequeue

This commit is contained in:
saurabh 2025-10-14 21:19:45 +05:30 committed by GitHub
commit e8fda15fb8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 1040 additions and 9 deletions

View file

@ -46,6 +46,8 @@ pub const aead = struct {
pub const Aes256Ocb = @import("crypto/aes_ocb.zig").Aes256Ocb;
};
pub const aes_ccm = @import("crypto/aes_ccm.zig");
pub const ascon = struct {
pub const AsconAead128 = @import("crypto/ascon.zig").AsconAead128;
};
@ -89,6 +91,7 @@ pub const auth = struct {
pub const Aegis256Mac_128 = variants.Aegis256Mac_128;
};
pub const cmac = @import("crypto/cmac.zig");
pub const cbc_mac = @import("crypto/cbc_mac.zig");
};
/// Core functions, that should rarely be used directly by applications.

876
lib/std/crypto/aes_ccm.zig Normal file
View file

@ -0,0 +1,876 @@
//! AES-CCM (Counter with CBC-MAC) authenticated encryption.
//! AES-CCM* extends CCM to support encryption-only mode (tag_len=0).
//!
//! References:
//! - NIST SP 800-38C: https://csrc.nist.gov/publications/detail/sp/800-38c/final
//! - RFC 3610: https://datatracker.ietf.org/doc/html/rfc3610
const std = @import("std");
const assert = std.debug.assert;
const crypto = std.crypto;
const mem = std.mem;
const modes = crypto.core.modes;
const AuthenticationError = crypto.errors.AuthenticationError;
const cbc_mac = @import("cbc_mac.zig");
/// AES-128-CCM* with no authentication (encryption-only, 13-byte nonce).
pub const Aes128Ccm0 = AesCcm(crypto.core.aes.Aes128, 0, 13);
/// AES-128-CCM with 8-byte authentication tag and 13-byte nonce.
pub const Aes128Ccm8 = AesCcm(crypto.core.aes.Aes128, 8, 13);
/// AES-128-CCM with 16-byte authentication tag and 13-byte nonce.
pub const Aes128Ccm16 = AesCcm(crypto.core.aes.Aes128, 16, 13);
/// AES-256-CCM* with no authentication (encryption-only, 13-byte nonce).
pub const Aes256Ccm0 = AesCcm(crypto.core.aes.Aes256, 0, 13);
/// AES-256-CCM with 8-byte authentication tag and 13-byte nonce.
pub const Aes256Ccm8 = AesCcm(crypto.core.aes.Aes256, 8, 13);
/// AES-256-CCM with 16-byte authentication tag and 13-byte nonce.
pub const Aes256Ccm16 = AesCcm(crypto.core.aes.Aes256, 16, 13);
/// AES-CCM authenticated encryption (NIST SP 800-38C, RFC 3610).
/// CCM* mode extends CCM to support encryption-only mode when tag_len=0.
///
/// `BlockCipher`: Block cipher type (must have 16-byte blocks).
/// `tag_len`: Authentication tag length in bytes (0, 4, 6, 8, 10, 12, 14, or 16).
/// When tag_len=0, CCM* provides encryption-only (no authentication).
/// `nonce_len`: Nonce length in bytes (7 to 13).
fn AesCcm(comptime BlockCipher: type, comptime tag_len: usize, comptime nonce_len: usize) type {
const block_length = BlockCipher.block.block_length;
comptime {
assert(block_length == 16); // CCM requires 16-byte blocks
if (tag_len != 0 and (tag_len < 4 or tag_len > 16 or tag_len % 2 != 0)) {
@compileError("CCM tag_length must be 0, 4, 6, 8, 10, 12, 14, or 16 bytes");
}
if (nonce_len < 7 or nonce_len > 13) {
@compileError("CCM nonce_length must be between 7 and 13 bytes");
}
}
const L = 15 - nonce_len; // Counter size in bytes (2 to 8)
return struct {
pub const key_length = BlockCipher.key_bits / 8;
pub const tag_length = tag_len;
pub const nonce_length = nonce_len;
/// `c`: Ciphertext output buffer (must be same length as m).
/// `tag`: Authentication tag output.
/// `m`: Plaintext message to encrypt.
/// `ad`: Associated data to authenticate.
/// `npub`: Public nonce (must be unique for each message with same key).
/// `key`: Encryption key.
pub fn encrypt(
c: []u8,
tag: *[tag_length]u8,
m: []const u8,
ad: []const u8,
npub: [nonce_length]u8,
key: [key_length]u8,
) void {
assert(c.len == m.len);
// Validate message length fits in L bytes
const max_msg_len: u64 = if (L >= 8) std.math.maxInt(u64) else (@as(u64, 1) << @as(u6, @intCast(L * 8))) - 1;
assert(m.len <= max_msg_len);
const cipher_ctx = BlockCipher.initEnc(key);
// CCM*: Skip authentication if tag_length is 0 (encryption-only mode)
if (tag_length > 0) {
// Compute CBC-MAC using the reusable CBC-MAC module
var mac_result: [block_length]u8 = undefined;
computeCbcMac(&mac_result, &key, m, ad, npub);
// Construct counter block for tag encryption (counter = 0)
var ctr_block: [block_length]u8 = undefined;
formatCtrBlock(&ctr_block, npub, 0);
// Encrypt the MAC tag
var s0: [block_length]u8 = undefined;
cipher_ctx.encrypt(&s0, &ctr_block);
for (tag, mac_result[0..tag_length], s0[0..tag_length]) |*t, mac_byte, s_byte| {
t.* = mac_byte ^ s_byte;
}
crypto.secureZero(u8, &mac_result);
crypto.secureZero(u8, &s0);
}
// Encrypt the plaintext using CTR mode (starting from counter = 1)
var ctr_block: [block_length]u8 = undefined;
formatCtrBlock(&ctr_block, npub, 1);
// CCM counter is in the last L bytes of the block
modes.ctrSlice(@TypeOf(cipher_ctx), cipher_ctx, c, m, ctr_block, .big, 1 + nonce_len, L);
}
/// `m`: Plaintext output buffer (must be same length as c).
/// `c`: Ciphertext to decrypt.
/// `tag`: Authentication tag to verify.
/// `ad`: Associated data (must match encryption).
/// `npub`: Public nonce (must match encryption).
/// `key`: Private key.
///
/// Asserts `c.len == m.len`.
/// Contents of `m` are undefined if an error is returned.
pub fn decrypt(
m: []u8,
c: []const u8,
tag: [tag_length]u8,
ad: []const u8,
npub: [nonce_length]u8,
key: [key_length]u8,
) AuthenticationError!void {
assert(m.len == c.len);
const cipher_ctx = BlockCipher.initEnc(key);
// Decrypt the ciphertext using CTR mode (starting from counter = 1)
var ctr_block: [block_length]u8 = undefined;
formatCtrBlock(&ctr_block, npub, 1);
// CCM counter is in the last L bytes of the block
modes.ctrSlice(@TypeOf(cipher_ctx), cipher_ctx, m, c, ctr_block, .big, 1 + nonce_len, L);
// CCM*: Skip authentication if tag_length is 0 (encryption-only mode)
if (tag_length > 0) {
// Compute CBC-MAC over decrypted plaintext
var mac_result: [block_length]u8 = undefined;
computeCbcMac(&mac_result, &key, m, ad, npub);
// Decrypt the received tag
formatCtrBlock(&ctr_block, npub, 0);
var s0: [block_length]u8 = undefined;
cipher_ctx.encrypt(&s0, &ctr_block);
// Reconstruct the expected MAC
var expected_mac: [tag_length]u8 = undefined;
for (&expected_mac, mac_result[0..tag_length], s0[0..tag_length]) |*e, mac_byte, s_byte| {
e.* = mac_byte ^ s_byte;
}
// Constant-time tag comparison
const valid = crypto.timing_safe.eql([tag_length]u8, expected_mac, tag);
if (!valid) {
crypto.secureZero(u8, &expected_mac);
crypto.secureZero(u8, &mac_result);
crypto.secureZero(u8, &s0);
crypto.secureZero(u8, m);
return error.AuthenticationFailed;
}
crypto.secureZero(u8, &expected_mac);
crypto.secureZero(u8, &mac_result);
crypto.secureZero(u8, &s0);
}
}
/// Format the counter block for CTR mode
/// Counter block format: [flags | nonce | counter]
/// flags = L - 1
fn formatCtrBlock(block: *[block_length]u8, npub: [nonce_length]u8, counter: u64) void {
@memset(block, 0);
block[0] = L - 1; // flags
@memcpy(block[1..][0..nonce_length], &npub);
// Counter goes in the last L bytes
const CounterInt = std.meta.Int(.unsigned, L * 8);
mem.writeInt(CounterInt, block[1 + nonce_length ..][0..L], @as(CounterInt, @intCast(counter)), .big);
}
/// Compute CBC-MAC over the message and associated data.
/// CCM uses plain CBC-MAC, not CMAC (RFC 3610).
fn computeCbcMac(mac: *[block_length]u8, key: *const [key_length]u8, m: []const u8, ad: []const u8, npub: [nonce_length]u8) void {
const CbcMac = cbc_mac.CbcMac(BlockCipher);
var ctx = CbcMac.init(key);
// Process B_0 block
var b0: [block_length]u8 = undefined;
formatB0Block(&b0, m.len, ad.len, npub);
ctx.update(&b0);
// Process associated data if present
// RFC 3610: AD is (encoded_length || ad) padded to block boundary
if (ad.len > 0) {
// Encode and add associated data length
var ad_len_encoding: [10]u8 = undefined;
const ad_len_size = encodeAdLength(&ad_len_encoding, ad.len);
// Process AD with padding to block boundary
ctx.update(ad_len_encoding[0..ad_len_size]);
ctx.update(ad);
// Add zero padding to reach block boundary
const total_ad_size = ad_len_size + ad.len;
const remainder = total_ad_size % block_length;
if (remainder > 0) {
const padding = [_]u8{0} ** block_length;
ctx.update(padding[0 .. block_length - remainder]);
}
}
// Process plaintext message
ctx.update(m);
// Finalize MAC
ctx.final(mac);
}
/// Format the B_0 block for CBC-MAC
/// B_0 format: [flags | nonce | message_length]
/// flags = 64*Adata + 8*M' + L'
/// where: Adata = (ad.len > 0), M' = (tag_length - 2)/2 if M>0 else 0, L' = L - 1
/// CCM*: When tag_length=0, M' is encoded as 0
fn formatB0Block(block: *[block_length]u8, msg_len: usize, ad_len: usize, npub: [nonce_length]u8) void {
@memset(block, 0);
const Adata: u8 = if (ad_len > 0) 1 else 0;
const M_prime: u8 = if (tag_length > 0) @intCast((tag_length - 2) / 2) else 0;
const L_prime: u8 = L - 1;
block[0] = (Adata << 6) | (M_prime << 3) | L_prime;
@memcpy(block[1..][0..nonce_length], &npub);
// Encode message length in last L bytes
const LengthInt = std.meta.Int(.unsigned, L * 8);
mem.writeInt(LengthInt, block[1 + nonce_length ..][0..L], @as(LengthInt, @intCast(msg_len)), .big);
}
/// Encode associated data length according to CCM specification
/// Returns the number of bytes written
fn encodeAdLength(buf: *[10]u8, ad_len: usize) usize {
if (ad_len < 65280) { // 2^16 - 2^8
// Encode as 2 bytes
mem.writeInt(u16, buf[0..2], @as(u16, @intCast(ad_len)), .big);
return 2;
} else if (ad_len <= std.math.maxInt(u32)) {
// Encode as 0xff || 0xfe || 4 bytes
buf[0] = 0xff;
buf[1] = 0xfe;
mem.writeInt(u32, buf[2..6], @as(u32, @intCast(ad_len)), .big);
return 6;
} else {
// Encode as 0xff || 0xff || 8 bytes
buf[0] = 0xff;
buf[1] = 0xff;
mem.writeInt(u64, buf[2..10], @as(u64, @intCast(ad_len)), .big);
return 10;
}
}
};
}
// Tests
const testing = std.testing;
const fmt = std.fmt;
const hexToBytes = fmt.hexToBytes;
test "Aes256Ccm8 - Encrypt decrypt round-trip" {
const key: [32]u8 = [_]u8{0x42} ** 32;
const nonce: [13]u8 = [_]u8{0x11} ** 13;
const m = "Hello, World! This is a test message.";
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [Aes256Ccm8.tag_length]u8 = undefined;
Aes256Ccm8.encrypt(&c, &tag, m, "", nonce, key);
try Aes256Ccm8.decrypt(&m2, &c, tag, "", nonce, key);
try testing.expectEqualSlices(u8, m[0..], m2[0..]);
}
test "Aes256Ccm8 - Associated data" {
const key: [32]u8 = [_]u8{0x42} ** 32;
const nonce: [13]u8 = [_]u8{0x11} ** 13;
const m = "secret message";
const ad = "additional authenticated data";
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [Aes256Ccm8.tag_length]u8 = undefined;
Aes256Ccm8.encrypt(&c, &tag, m, ad, nonce, key);
try Aes256Ccm8.decrypt(&m2, &c, tag, ad, nonce, key);
try testing.expectEqualSlices(u8, m[0..], m2[0..]);
var m3: [m.len]u8 = undefined;
const wrong_adata = "wrong data";
const result = Aes256Ccm8.decrypt(&m3, &c, tag, wrong_adata, nonce, key);
try testing.expectError(error.AuthenticationFailed, result);
}
test "Aes256Ccm8 - Wrong key" {
const key: [32]u8 = [_]u8{0x42} ** 32;
const wrong_key: [32]u8 = [_]u8{0x43} ** 32;
const nonce: [13]u8 = [_]u8{0x11} ** 13;
const m = "secret";
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [Aes256Ccm8.tag_length]u8 = undefined;
Aes256Ccm8.encrypt(&c, &tag, m, "", nonce, key);
const result = Aes256Ccm8.decrypt(&m2, &c, tag, "", nonce, wrong_key);
try testing.expectError(error.AuthenticationFailed, result);
}
test "Aes256Ccm8 - Corrupted ciphertext" {
const key: [32]u8 = [_]u8{0x42} ** 32;
const nonce: [13]u8 = [_]u8{0x11} ** 13;
const m = "secret message";
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [Aes256Ccm8.tag_length]u8 = undefined;
Aes256Ccm8.encrypt(&c, &tag, m, "", nonce, key);
c[5] ^= 0xFF;
const result = Aes256Ccm8.decrypt(&m2, &c, tag, "", nonce, key);
try testing.expectError(error.AuthenticationFailed, result);
}
test "Aes256Ccm8 - Empty plaintext" {
const key: [32]u8 = [_]u8{0x42} ** 32;
const nonce: [13]u8 = [_]u8{0x11} ** 13;
const m = "";
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [Aes256Ccm8.tag_length]u8 = undefined;
Aes256Ccm8.encrypt(&c, &tag, m, "", nonce, key);
try Aes256Ccm8.decrypt(&m2, &c, tag, "", nonce, key);
try testing.expectEqual(@as(usize, 0), m2.len);
}
test "Aes128Ccm8 - Basic functionality" {
const key: [16]u8 = [_]u8{0x42} ** 16;
const nonce: [13]u8 = [_]u8{0x11} ** 13;
const m = "Test AES-128-CCM";
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [Aes128Ccm8.tag_length]u8 = undefined;
Aes128Ccm8.encrypt(&c, &tag, m, "", nonce, key);
try Aes128Ccm8.decrypt(&m2, &c, tag, "", nonce, key);
try testing.expectEqualSlices(u8, m[0..], m2[0..]);
}
test "Aes256Ccm16 - 16-byte tag" {
const key: [32]u8 = [_]u8{0x42} ** 32;
const nonce: [13]u8 = [_]u8{0x11} ** 13;
const m = "Test 16-byte tag";
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [Aes256Ccm16.tag_length]u8 = undefined;
Aes256Ccm16.encrypt(&c, &tag, m, "", nonce, key);
try testing.expectEqual(@as(usize, 16), tag.len);
try Aes256Ccm16.decrypt(&m2, &c, tag, "", nonce, key);
try testing.expectEqualSlices(u8, m[0..], m2[0..]);
}
test "Aes256Ccm8 - Edge case short nonce" {
const Aes256Ccm8_7 = AesCcm(crypto.core.aes.Aes256, 8, 7);
var key: [32]u8 = undefined;
_ = try hexToBytes(&key, "eda32f751456e33195f1f499cf2dc7c97ea127b6d488f211ccc5126fbb24afa6");
var nonce: [7]u8 = undefined;
_ = try hexToBytes(&nonce, "a544218dadd3c1");
var m: [1]u8 = undefined;
_ = try hexToBytes(&m, "00");
var c: [m.len]u8 = undefined;
var tag: [Aes256Ccm8_7.tag_length]u8 = undefined;
Aes256Ccm8_7.encrypt(&c, &tag, &m, "", nonce, key);
var m2: [c.len]u8 = undefined;
try Aes256Ccm8_7.decrypt(&m2, &c, tag, "", nonce, key);
try testing.expectEqualSlices(u8, &m, &m2);
}
test "Aes256Ccm8 - Edge case long nonce" {
var key: [32]u8 = undefined;
_ = try hexToBytes(&key, "e1b8a927a95efe94656677b692662000278b441c79e879dd5c0ddc758bdc9ee8");
var nonce: [13]u8 = undefined;
_ = try hexToBytes(&nonce, "a544218dadd3c10583db49cf39");
var m: [1]u8 = undefined;
_ = try hexToBytes(&m, "00");
var c: [m.len]u8 = undefined;
var tag: [Aes256Ccm8.tag_length]u8 = undefined;
Aes256Ccm8.encrypt(&c, &tag, &m, "", nonce, key);
var m2: [c.len]u8 = undefined;
try Aes256Ccm8.decrypt(&m2, &c, tag, "", nonce, key);
try testing.expectEqualSlices(u8, &m, &m2);
}
test "Aes256Ccm8 - With AAD and wrong AAD detection" {
var key: [32]u8 = undefined;
_ = try hexToBytes(&key, "8c5cf3457ff22228c39c051c4e05ed4093657eb303f859a9d4b0f8be0127d88a");
var nonce: [13]u8 = undefined;
_ = try hexToBytes(&nonce, "a544218dadd3c10583db49cf39");
var m: [1]u8 = undefined;
_ = try hexToBytes(&m, "00");
var ad: [32]u8 = undefined;
_ = try hexToBytes(&ad, "3c0e2815d37d844f7ac240ba9d6e3a0b2a86f706e885959e09a1005e024f6907");
var c: [m.len]u8 = undefined;
var tag: [Aes256Ccm8.tag_length]u8 = undefined;
Aes256Ccm8.encrypt(&c, &tag, &m, &ad, nonce, key);
var m2: [c.len]u8 = undefined;
try Aes256Ccm8.decrypt(&m2, &c, tag, &ad, nonce, key);
try testing.expectEqualSlices(u8, &m, &m2);
var wrong_ad: [32]u8 = undefined;
_ = try hexToBytes(&wrong_ad, "0000000000000000000000000000000000000000000000000000000000000000");
var m3: [c.len]u8 = undefined;
const result = Aes256Ccm8.decrypt(&m3, &c, tag, &wrong_ad, nonce, key);
try testing.expectError(error.AuthenticationFailed, result);
}
test "Aes256Ccm8 - Multi-block payload" {
const Aes256Ccm8_12 = AesCcm(crypto.core.aes.Aes256, 8, 12);
// Test with 32-byte payload (2 AES blocks)
var key: [32]u8 = undefined;
_ = try hexToBytes(&key, "af063639e66c284083c5cf72b70d8bc277f5978e80d9322d99f2fdc718cda569");
var nonce: [12]u8 = undefined;
_ = try hexToBytes(&nonce, "a544218dadd3c10583db49cf");
var m: [32]u8 = undefined;
_ = try hexToBytes(&m, "00112233445566778899aabbccddeeff00112233445566778899aabbccddeeff");
// Encrypt
var c: [32]u8 = undefined;
var tag: [Aes256Ccm8_12.tag_length]u8 = undefined;
Aes256Ccm8_12.encrypt(&c, &tag, &m, "", nonce, key);
// Decrypt and verify
var m2: [32]u8 = undefined;
try Aes256Ccm8_12.decrypt(&m2, &c, tag, "", nonce, key);
try testing.expectEqualSlices(u8, &m, &m2);
}
test "Aes256Ccm8 - Multi-block with AAD" {
const Aes256Ccm8_12 = AesCcm(crypto.core.aes.Aes256, 8, 12);
// Test with multi-block payload (3 AES blocks) and AAD
var key: [32]u8 = undefined;
_ = try hexToBytes(&key, "f7079dfa3b5c7b056347d7e437bcded683abd6e2c9e069d333284082cbb5d453");
var nonce: [12]u8 = undefined;
_ = try hexToBytes(&nonce, "5b8e40746f6b98e00f1d13ff");
// 48-byte payload (3 AES blocks)
var m: [48]u8 = undefined;
_ = try hexToBytes(&m, "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f");
// 16-byte AAD
var ad: [16]u8 = undefined;
_ = try hexToBytes(&ad, "000102030405060708090a0b0c0d0e0f");
// Encrypt
var c: [48]u8 = undefined;
var tag: [Aes256Ccm8_12.tag_length]u8 = undefined;
Aes256Ccm8_12.encrypt(&c, &tag, &m, &ad, nonce, key);
// Decrypt and verify
var m2: [48]u8 = undefined;
try Aes256Ccm8_12.decrypt(&m2, &c, tag, &ad, nonce, key);
try testing.expectEqualSlices(u8, &m, &m2);
}
test "Aes256Ccm8 - Minimum nonce length" {
const Aes256Ccm8_7 = AesCcm(crypto.core.aes.Aes256, 8, 7);
// Test with 7-byte nonce (minimum allowed by CCM spec)
var key: [32]u8 = undefined;
_ = try hexToBytes(&key, "404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f");
var nonce: [7]u8 = undefined;
_ = try hexToBytes(&nonce, "10111213141516");
const m = "Test message with minimum nonce length";
// Encrypt
var c: [m.len]u8 = undefined;
var tag: [Aes256Ccm8_7.tag_length]u8 = undefined;
Aes256Ccm8_7.encrypt(&c, &tag, m, "", nonce, key);
// Decrypt and verify
var m2: [m.len]u8 = undefined;
try Aes256Ccm8_7.decrypt(&m2, &c, tag, "", nonce, key);
try testing.expectEqualSlices(u8, m[0..], m2[0..]);
}
test "Aes256Ccm8 - Maximum nonce length" {
// Test with 13-byte nonce (maximum allowed by CCM spec)
var key: [32]u8 = undefined;
_ = try hexToBytes(&key, "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f");
var nonce: [13]u8 = undefined;
_ = try hexToBytes(&nonce, "101112131415161718191a1b1c");
const m = "Test message with maximum nonce length";
// Encrypt
var c: [m.len]u8 = undefined;
var tag: [Aes256Ccm8.tag_length]u8 = undefined;
Aes256Ccm8.encrypt(&c, &tag, m, "", nonce, key);
// Decrypt and verify
var m2: [m.len]u8 = undefined;
try Aes256Ccm8.decrypt(&m2, &c, tag, "", nonce, key);
try testing.expectEqualSlices(u8, m[0..], m2[0..]);
}
// RFC 3610 test vectors
test "Aes128Ccm8 - RFC 3610 Packet Vector #1" {
const Aes128Ccm8_13 = AesCcm(crypto.core.aes.Aes128, 8, 13);
// RFC 3610 Appendix A, Packet Vector #1
var key: [16]u8 = undefined;
_ = try hexToBytes(&key, "C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF");
var nonce: [13]u8 = undefined;
_ = try hexToBytes(&nonce, "00000003020100A0A1A2A3A4A5");
var ad: [8]u8 = undefined;
_ = try hexToBytes(&ad, "0001020304050607");
var plaintext: [23]u8 = undefined;
_ = try hexToBytes(&plaintext, "08090A0B0C0D0E0F101112131415161718191A1B1C1D1E");
// Expected ciphertext and tag from RFC
var expected_ciphertext: [23]u8 = undefined;
_ = try hexToBytes(&expected_ciphertext, "588C979A61C663D2F066D0C2C0F989806D5F6B61DAC384");
var expected_tag: [8]u8 = undefined;
_ = try hexToBytes(&expected_tag, "17E8D12CFDF926E0");
// Encrypt
var c: [plaintext.len]u8 = undefined;
var tag: [Aes128Ccm8_13.tag_length]u8 = undefined;
Aes128Ccm8_13.encrypt(&c, &tag, &plaintext, &ad, nonce, key);
// Verify ciphertext matches RFC expected output
try testing.expectEqualSlices(u8, &expected_ciphertext, &c);
// Verify tag matches RFC expected output
try testing.expectEqualSlices(u8, &expected_tag, &tag);
// Decrypt and verify round-trip
var m: [plaintext.len]u8 = undefined;
try Aes128Ccm8_13.decrypt(&m, &c, tag, &ad, nonce, key);
try testing.expectEqualSlices(u8, &plaintext, &m);
}
test "Aes128Ccm8 - RFC 3610 Packet Vector #2" {
const Aes128Ccm8_13 = AesCcm(crypto.core.aes.Aes128, 8, 13);
// RFC 3610 Appendix A, Packet Vector #2 (8-byte tag, M=8)
var key: [16]u8 = undefined;
_ = try hexToBytes(&key, "C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF");
var nonce: [13]u8 = undefined;
_ = try hexToBytes(&nonce, "00000004030201A0A1A2A3A4A5");
var ad: [8]u8 = undefined;
_ = try hexToBytes(&ad, "0001020304050607");
var plaintext: [24]u8 = undefined;
_ = try hexToBytes(&plaintext, "08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
// Expected ciphertext and tag from RFC (from total packet: header + ciphertext + tag)
var expected_ciphertext: [24]u8 = undefined;
_ = try hexToBytes(&expected_ciphertext, "72C91A36E135F8CF291CA894085C87E3CC15C439C9E43A3B");
var expected_tag: [8]u8 = undefined;
_ = try hexToBytes(&expected_tag, "A091D56E10400916");
// Encrypt
var c: [plaintext.len]u8 = undefined;
var tag: [Aes128Ccm8_13.tag_length]u8 = undefined;
Aes128Ccm8_13.encrypt(&c, &tag, &plaintext, &ad, nonce, key);
// Verify ciphertext matches RFC expected output
try testing.expectEqualSlices(u8, &expected_ciphertext, &c);
// Verify tag matches RFC expected output
try testing.expectEqualSlices(u8, &expected_tag, &tag);
// Decrypt and verify round-trip
var m: [plaintext.len]u8 = undefined;
try Aes128Ccm8_13.decrypt(&m, &c, tag, &ad, nonce, key);
try testing.expectEqualSlices(u8, &plaintext, &m);
}
test "Aes128Ccm8 - RFC 3610 Packet Vector #3" {
const Aes128Ccm8_13 = AesCcm(crypto.core.aes.Aes128, 8, 13);
// RFC 3610 Appendix A, Packet Vector #3 (8-byte tag, 25-byte payload)
var key: [16]u8 = undefined;
_ = try hexToBytes(&key, "C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF");
var nonce: [13]u8 = undefined;
_ = try hexToBytes(&nonce, "00000005040302A0A1A2A3A4A5");
var ad: [8]u8 = undefined;
_ = try hexToBytes(&ad, "0001020304050607");
var plaintext: [25]u8 = undefined;
_ = try hexToBytes(&plaintext, "08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F20");
// Expected ciphertext and tag from RFC
var expected_ciphertext: [25]u8 = undefined;
_ = try hexToBytes(&expected_ciphertext, "51B1E5F44A197D1DA46B0F8E2D282AE871E838BB64DA859657");
var expected_tag: [8]u8 = undefined;
_ = try hexToBytes(&expected_tag, "4ADAA76FBD9FB0C5");
// Encrypt
var c: [plaintext.len]u8 = undefined;
var tag: [Aes128Ccm8_13.tag_length]u8 = undefined;
Aes128Ccm8_13.encrypt(&c, &tag, &plaintext, &ad, nonce, key);
// Verify ciphertext matches RFC expected output
try testing.expectEqualSlices(u8, &expected_ciphertext, &c);
// Verify tag matches RFC expected output
try testing.expectEqualSlices(u8, &expected_tag, &tag);
// Decrypt and verify round-trip
var m: [plaintext.len]u8 = undefined;
try Aes128Ccm8_13.decrypt(&m, &c, tag, &ad, nonce, key);
try testing.expectEqualSlices(u8, &plaintext, &m);
}
// NIST SP 800-38C test vectors
test "Aes128Ccm4 - NIST SP 800-38C Example 1" {
const Aes128Ccm4_7 = AesCcm(crypto.core.aes.Aes128, 4, 7);
// Example 1 (C.1): Klen=128, Tlen=32, Nlen=56, Alen=64, Plen=32
var key: [16]u8 = undefined;
_ = try hexToBytes(&key, "404142434445464748494a4b4c4d4e4f");
var nonce: [7]u8 = undefined;
_ = try hexToBytes(&nonce, "10111213141516");
var ad: [8]u8 = undefined;
_ = try hexToBytes(&ad, "0001020304050607");
var plaintext: [4]u8 = undefined;
_ = try hexToBytes(&plaintext, "20212223");
// Expected ciphertext and tag from NIST
var expected_ciphertext: [4]u8 = undefined;
_ = try hexToBytes(&expected_ciphertext, "7162015b");
var expected_tag: [4]u8 = undefined;
_ = try hexToBytes(&expected_tag, "4dac255d");
// Encrypt
var c: [plaintext.len]u8 = undefined;
var tag: [Aes128Ccm4_7.tag_length]u8 = undefined;
Aes128Ccm4_7.encrypt(&c, &tag, &plaintext, &ad, nonce, key);
// Verify ciphertext matches NIST expected output
try testing.expectEqualSlices(u8, &expected_ciphertext, &c);
// Verify tag matches NIST expected output
try testing.expectEqualSlices(u8, &expected_tag, &tag);
// Decrypt and verify round-trip
var m: [plaintext.len]u8 = undefined;
try Aes128Ccm4_7.decrypt(&m, &c, tag, &ad, nonce, key);
try testing.expectEqualSlices(u8, &plaintext, &m);
}
test "Aes128Ccm6 - NIST SP 800-38C Example 2" {
const Aes128Ccm6_8 = AesCcm(crypto.core.aes.Aes128, 6, 8);
// Example 2 (C.2): Klen=128, Tlen=48, Nlen=64, Alen=128, Plen=128
var key: [16]u8 = undefined;
_ = try hexToBytes(&key, "404142434445464748494a4b4c4d4e4f");
var nonce: [8]u8 = undefined;
_ = try hexToBytes(&nonce, "1011121314151617");
var ad: [16]u8 = undefined;
_ = try hexToBytes(&ad, "000102030405060708090a0b0c0d0e0f");
var plaintext: [16]u8 = undefined;
_ = try hexToBytes(&plaintext, "202122232425262728292a2b2c2d2e2f");
// Expected ciphertext and tag from NIST
var expected_ciphertext: [16]u8 = undefined;
_ = try hexToBytes(&expected_ciphertext, "d2a1f0e051ea5f62081a7792073d593d");
var expected_tag: [6]u8 = undefined;
_ = try hexToBytes(&expected_tag, "1fc64fbfaccd");
// Encrypt
var c: [plaintext.len]u8 = undefined;
var tag: [Aes128Ccm6_8.tag_length]u8 = undefined;
Aes128Ccm6_8.encrypt(&c, &tag, &plaintext, &ad, nonce, key);
// Verify ciphertext matches NIST expected output
try testing.expectEqualSlices(u8, &expected_ciphertext, &c);
// Verify tag matches NIST expected output
try testing.expectEqualSlices(u8, &expected_tag, &tag);
// Decrypt and verify round-trip
var m: [plaintext.len]u8 = undefined;
try Aes128Ccm6_8.decrypt(&m, &c, tag, &ad, nonce, key);
try testing.expectEqualSlices(u8, &plaintext, &m);
}
test "Aes128Ccm8 - NIST SP 800-38C Example 3" {
const Aes128Ccm8_12 = AesCcm(crypto.core.aes.Aes128, 8, 12);
// Example 3 (C.3): Klen=128, Tlen=64, Nlen=96, Alen=160, Plen=192
var key: [16]u8 = undefined;
_ = try hexToBytes(&key, "404142434445464748494a4b4c4d4e4f");
var nonce: [12]u8 = undefined;
_ = try hexToBytes(&nonce, "101112131415161718191a1b");
var ad: [20]u8 = undefined;
_ = try hexToBytes(&ad, "000102030405060708090a0b0c0d0e0f10111213");
var plaintext: [24]u8 = undefined;
_ = try hexToBytes(&plaintext, "202122232425262728292a2b2c2d2e2f3031323334353637");
// Expected ciphertext and tag from NIST
var expected_ciphertext: [24]u8 = undefined;
_ = try hexToBytes(&expected_ciphertext, "e3b201a9f5b71a7a9b1ceaeccd97e70b6176aad9a4428aa5");
var expected_tag: [8]u8 = undefined;
_ = try hexToBytes(&expected_tag, "484392fbc1b09951");
// Encrypt
var c: [plaintext.len]u8 = undefined;
var tag: [Aes128Ccm8_12.tag_length]u8 = undefined;
Aes128Ccm8_12.encrypt(&c, &tag, &plaintext, &ad, nonce, key);
// Verify ciphertext matches NIST expected output
try testing.expectEqualSlices(u8, &expected_ciphertext, &c);
// Verify tag matches NIST expected output
try testing.expectEqualSlices(u8, &expected_tag, &tag);
// Decrypt and verify round-trip
var m: [plaintext.len]u8 = undefined;
try Aes128Ccm8_12.decrypt(&m, &c, tag, &ad, nonce, key);
try testing.expectEqualSlices(u8, &plaintext, &m);
}
test "Aes128Ccm14 - NIST SP 800-38C Example 4" {
const Aes128Ccm14_13 = AesCcm(crypto.core.aes.Aes128, 14, 13);
// Example 4 (C.4): Klen=128, Tlen=112, Nlen=104, Alen=524288, Plen=256
// Note: Associated data is 65536 bytes (256-byte pattern repeated 256 times)
var key: [16]u8 = undefined;
_ = try hexToBytes(&key, "404142434445464748494a4b4c4d4e4f");
var nonce: [13]u8 = undefined;
_ = try hexToBytes(&nonce, "101112131415161718191a1b1c");
var plaintext: [32]u8 = undefined;
_ = try hexToBytes(&plaintext, "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f");
// Generate 65536-byte associated data (256-byte pattern repeated 256 times)
var pattern: [256]u8 = undefined;
_ = try hexToBytes(&pattern, "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aaabacadaeafb0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff");
var ad: [65536]u8 = undefined;
for (0..256) |i| {
@memcpy(ad[i * 256 .. (i + 1) * 256], &pattern);
}
// Expected ciphertext and tag from NIST
var expected_ciphertext: [32]u8 = undefined;
_ = try hexToBytes(&expected_ciphertext, "69915dad1e84c6376a68c2967e4dab615ae0fd1faec44cc484828529463ccf72");
var expected_tag: [14]u8 = undefined;
_ = try hexToBytes(&expected_tag, "b4ac6bec93e8598e7f0dadbcea5b");
// Encrypt
var c: [plaintext.len]u8 = undefined;
var tag: [Aes128Ccm14_13.tag_length]u8 = undefined;
Aes128Ccm14_13.encrypt(&c, &tag, &plaintext, &ad, nonce, key);
// Verify ciphertext matches NIST expected output
try testing.expectEqualSlices(u8, &expected_ciphertext, &c);
// Verify tag matches NIST expected output
try testing.expectEqualSlices(u8, &expected_tag, &tag);
// Decrypt and verify round-trip
var m: [plaintext.len]u8 = undefined;
try Aes128Ccm14_13.decrypt(&m, &c, tag, &ad, nonce, key);
try testing.expectEqualSlices(u8, &plaintext, &m);
}
// CCM* test vectors (encryption-only mode with M=0)
test "Aes128Ccm0 - IEEE 802.15.4 Data Frame (Encryption-only)" {
// IEEE 802.15.4 test vector from section 2.7
// Security level 0x04 (ENC, encryption without authentication)
var key: [16]u8 = undefined;
_ = try hexToBytes(&key, "C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF");
var nonce: [13]u8 = undefined;
_ = try hexToBytes(&nonce, "ACDE48000000000100000005" ++ "04");
var plaintext: [4]u8 = undefined;
_ = try hexToBytes(&plaintext, "61626364");
var ad: [26]u8 = undefined;
_ = try hexToBytes(&ad, "69DC84214302000000004DEAC010000000048DEAC04050000");
// Expected ciphertext from IEEE spec
var expected_ciphertext: [4]u8 = undefined;
_ = try hexToBytes(&expected_ciphertext, "D43E022B");
// Encrypt
var c: [plaintext.len]u8 = undefined;
var tag: [Aes128Ccm0.tag_length]u8 = undefined;
Aes128Ccm0.encrypt(&c, &tag, &plaintext, &ad, nonce, key);
// Verify ciphertext matches IEEE expected output
try testing.expectEqualSlices(u8, &expected_ciphertext, &c);
// Decrypt and verify round-trip
var m: [plaintext.len]u8 = undefined;
try Aes128Ccm0.decrypt(&m, &c, tag, &ad, nonce, key);
try testing.expectEqualSlices(u8, &plaintext, &m);
}
test "Aes128Ccm0 - Zero-length plaintext with encryption-only" {
const key: [16]u8 = [_]u8{0x42} ** 16;
const nonce: [13]u8 = [_]u8{0x11} ** 13;
const m = "";
const ad = "some associated data";
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [Aes128Ccm0.tag_length]u8 = undefined;
Aes128Ccm0.encrypt(&c, &tag, m, ad, nonce, key);
try Aes128Ccm0.decrypt(&m2, &c, tag, ad, nonce, key);
try testing.expectEqual(@as(usize, 0), m2.len);
}
test "Aes256Ccm0 - Basic encryption-only round-trip" {
const key: [32]u8 = [_]u8{0x42} ** 32;
const nonce: [13]u8 = [_]u8{0x11} ** 13;
const m = "Hello, CCM* encryption-only mode!";
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [Aes256Ccm0.tag_length]u8 = undefined;
Aes256Ccm0.encrypt(&c, &tag, m, "", nonce, key);
try Aes256Ccm0.decrypt(&m2, &c, tag, "", nonce, key);
try testing.expectEqualSlices(u8, m[0..], m2[0..]);
}

152
lib/std/crypto/cbc_mac.zig Normal file
View file

@ -0,0 +1,152 @@
const std = @import("std");
const crypto = std.crypto;
const mem = std.mem;
/// CBC-MAC with AES-128 - FIPS 113 https://csrc.nist.gov/publications/detail/fips/113/archive/1985-05-30
pub const CbcMacAes128 = CbcMac(crypto.core.aes.Aes128);
/// FIPS 113 (1985): Computer Data Authentication
/// https://csrc.nist.gov/publications/detail/fips/113/archive/1985-05-30
///
/// WARNING: CBC-MAC is insecure for variable-length messages without additional
/// protection. Only use when required by protocols like CCM that mitigate this.
pub fn CbcMac(comptime BlockCipher: type) type {
const BlockCipherCtx = @typeInfo(@TypeOf(BlockCipher.initEnc)).@"fn".return_type.?;
const Block = [BlockCipher.block.block_length]u8;
return struct {
const Self = @This();
pub const key_length = BlockCipher.key_bits / 8;
pub const block_length = BlockCipher.block.block_length;
pub const mac_length = block_length;
cipher_ctx: BlockCipherCtx,
buf: Block = [_]u8{0} ** block_length,
pos: usize = 0,
pub fn create(out: *[mac_length]u8, msg: []const u8, key: *const [key_length]u8) void {
var ctx = Self.init(key);
ctx.update(msg);
ctx.final(out);
}
pub fn init(key: *const [key_length]u8) Self {
return Self{
.cipher_ctx = BlockCipher.initEnc(key.*),
};
}
pub fn update(self: *Self, msg: []const u8) void {
const left = block_length - self.pos;
var m = msg;
// Partial buffer exists from previous update. Complete the block.
if (m.len > left) {
for (self.buf[self.pos..], 0..) |*b, i| b.* ^= m[i];
m = m[left..];
self.cipher_ctx.encrypt(&self.buf, &self.buf);
self.pos = 0;
}
// Full blocks.
while (m.len > block_length) {
for (self.buf[0..block_length], 0..) |*b, i| b.* ^= m[i];
m = m[block_length..];
self.cipher_ctx.encrypt(&self.buf, &self.buf);
self.pos = 0;
}
// Copy any remainder for next pass.
if (m.len > 0) {
for (self.buf[self.pos..][0..m.len], 0..) |*b, i| b.* ^= m[i];
self.pos += m.len;
}
}
pub fn final(self: *Self, out: *[mac_length]u8) void {
// CBC-MAC: encrypt the current buffer state.
// Partial blocks are implicitly zero-padded: buf[pos..] contains zeros from initialization.
self.cipher_ctx.encrypt(out, &self.buf);
}
};
}
const testing = std.testing;
test "CbcMacAes128 - Empty message" {
const key = [_]u8{ 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
var msg: [0]u8 = undefined;
// CBC-MAC of empty message = Encrypt(0)
const expected = [_]u8{ 0x7d, 0xf7, 0x6b, 0x0c, 0x1a, 0xb8, 0x99, 0xb3, 0x3e, 0x42, 0xf0, 0x47, 0xb9, 0x1b, 0x54, 0x6f };
var out: [CbcMacAes128.mac_length]u8 = undefined;
CbcMacAes128.create(&out, &msg, &key);
try testing.expectEqualSlices(u8, &out, &expected);
}
test "CbcMacAes128 - Single block (16 bytes)" {
const key = [_]u8{ 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
const msg = [_]u8{ 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a };
// CBC-MAC = Encrypt(msg XOR 0)
const expected = [_]u8{ 0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60, 0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97 };
var out: [CbcMacAes128.mac_length]u8 = undefined;
CbcMacAes128.create(&out, &msg, &key);
try testing.expectEqualSlices(u8, &out, &expected);
}
test "CbcMacAes128 - Multiple blocks (40 bytes)" {
const key = [_]u8{ 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
const msg = [_]u8{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
};
// CBC-MAC processes: block1 | block2 | block3 (last 8 bytes zero-padded)
const expected = [_]u8{ 0x07, 0xd1, 0x92, 0xe3, 0xe6, 0xf0, 0x99, 0xed, 0xcc, 0x39, 0xfd, 0xe6, 0xd0, 0x9c, 0x76, 0x2d };
var out: [CbcMacAes128.mac_length]u8 = undefined;
CbcMacAes128.create(&out, &msg, &key);
try testing.expectEqualSlices(u8, &out, &expected);
}
test "CbcMacAes128 - Incremental update" {
const key = [_]u8{ 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
const msg = [_]u8{
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
};
// Process in chunks
var ctx = CbcMacAes128.init(&key);
ctx.update(msg[0..10]);
ctx.update(msg[10..20]);
ctx.update(msg[20..]);
var out1: [CbcMacAes128.mac_length]u8 = undefined;
ctx.final(&out1);
// Compare with one-shot processing
var out2: [CbcMacAes128.mac_length]u8 = undefined;
CbcMacAes128.create(&out2, &msg, &key);
try testing.expectEqualSlices(u8, &out1, &out2);
}
test "CbcMacAes128 - Different from CMAC" {
// Verify that CBC-MAC and CMAC produce different outputs
const key = [_]u8{ 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
const msg = [_]u8{ 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a };
var cbc_mac_out: [CbcMacAes128.mac_length]u8 = undefined;
CbcMacAes128.create(&cbc_mac_out, &msg, &key);
// CMAC output for same input (from RFC 4493)
const cmac_out = [_]u8{ 0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44, 0xf7, 0x9b, 0xdd, 0x9d, 0xd0, 0x4a, 0x28, 0x7c };
// They should be different
try testing.expect(!mem.eql(u8, &cbc_mac_out, &cmac_out));
}

View file

@ -54,7 +54,7 @@ pub fn syscall_fork() usize {
\\ 2:
: [ret] "={o0}" (-> usize),
: [number] "{g1}" (@intFromEnum(SYS.fork)),
: .{ .memory = true, .xcc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
: .{ .memory = true, .icc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
}
pub fn syscall0(number: SYS) usize {
@ -66,7 +66,7 @@ pub fn syscall0(number: SYS) usize {
\\ 1:
: [ret] "={o0}" (-> usize),
: [number] "{g1}" (@intFromEnum(number)),
: .{ .memory = true, .xcc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
: .{ .memory = true, .icc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
}
pub fn syscall1(number: SYS, arg1: usize) usize {
@ -79,7 +79,7 @@ pub fn syscall1(number: SYS, arg1: usize) usize {
: [ret] "={o0}" (-> usize),
: [number] "{g1}" (@intFromEnum(number)),
[arg1] "{o0}" (arg1),
: .{ .memory = true, .xcc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
: .{ .memory = true, .icc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
}
pub fn syscall2(number: SYS, arg1: usize, arg2: usize) usize {
@ -93,7 +93,7 @@ pub fn syscall2(number: SYS, arg1: usize, arg2: usize) usize {
: [number] "{g1}" (@intFromEnum(number)),
[arg1] "{o0}" (arg1),
[arg2] "{o1}" (arg2),
: .{ .memory = true, .xcc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
: .{ .memory = true, .icc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
}
pub fn syscall3(number: SYS, arg1: usize, arg2: usize, arg3: usize) usize {
@ -108,7 +108,7 @@ pub fn syscall3(number: SYS, arg1: usize, arg2: usize, arg3: usize) usize {
[arg1] "{o0}" (arg1),
[arg2] "{o1}" (arg2),
[arg3] "{o2}" (arg3),
: .{ .memory = true, .xcc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
: .{ .memory = true, .icc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
}
pub fn syscall4(number: SYS, arg1: usize, arg2: usize, arg3: usize, arg4: usize) usize {
@ -124,7 +124,7 @@ pub fn syscall4(number: SYS, arg1: usize, arg2: usize, arg3: usize, arg4: usize)
[arg2] "{o1}" (arg2),
[arg3] "{o2}" (arg3),
[arg4] "{o3}" (arg4),
: .{ .memory = true, .xcc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
: .{ .memory = true, .icc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
}
pub fn syscall5(number: SYS, arg1: usize, arg2: usize, arg3: usize, arg4: usize, arg5: usize) usize {
@ -141,7 +141,7 @@ pub fn syscall5(number: SYS, arg1: usize, arg2: usize, arg3: usize, arg4: usize,
[arg3] "{o2}" (arg3),
[arg4] "{o3}" (arg4),
[arg5] "{o4}" (arg5),
: .{ .memory = true, .xcc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
: .{ .memory = true, .icc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
}
pub fn syscall6(
@ -167,7 +167,7 @@ pub fn syscall6(
[arg4] "{o3}" (arg4),
[arg5] "{o4}" (arg5),
[arg6] "{o5}" (arg6),
: .{ .memory = true, .xcc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
: .{ .memory = true, .icc = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
}
pub fn clone() callconv(.naked) usize {
@ -233,7 +233,7 @@ pub fn restore_rt() callconv(.c) void {
return asm volatile ("t 0x6d"
:
: [number] "{g1}" (@intFromEnum(SYS.rt_sigreturn)),
: .{ .memory = true, .xcc = true, .o0 = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
: .{ .memory = true, .icc = true, .o0 = true, .o1 = true, .o2 = true, .o3 = true, .o4 = true, .o5 = true, .o7 = true });
}
pub const F = struct {