This prevents it from trying to access thread local storage before it
has set up thread local storage, particularly when code coverage
instrumentation is enabled.
* common symbols are now public from std.c even if they live in
std.posix
* LOCK is now one of the common symbols since it is the same on 100% of
operating systems.
* flock is now void value on wasi and windows
* std.fs.Dir now uses flock being void as feature detection, avoiding
trying to call it on wasi and windows
It is now composed of these main sections:
* Declarations that are shared among all operating systems.
* Declarations that have the same name, but different type signatures
depending on the operating system. Often multiple operating systems
share the same type signatures however.
* Declarations that are specific to a single operating system.
- These are imported one per line so you can see where they come from,
protected by a comptime block to prevent accessing the wrong one.
Closes#19352 by changing the convention to making types `void` and
functions `{}`, so that it becomes possible to update `@hasDecl` sites
to use `@TypeOf(f) != void` or `T != void`. Happily, this ended up
removing some duplicate logic and update some bitrotted feature
detection checks.
A handful of types have been modified to gain namespacing and type
safety. This is a breaking change.
Oh, and the last usage of `usingnamespace` site is eliminated.
To facilitate #1840, this commit slims `std.windows.kernel32` to only
have the functions needed by the standard library. Since this will break
projects that relied on these, I offer two solutions:
- Make an argument as to why certain functions should be added back in.
Note that they may just be wrappers around `ntdll` APIs, which would
go against #1840.
If necessary I'll add them back in *and* make wrappers in
`std.windows` for it.
- Maintain your own list of APIs. This is the option taken by bun[1],
where they wrap functions with tracing.
- Use `zigwin32`.
I've also added TODO comments that specify which functions can be
reimplemented using `ntdll` APIs in the future.
Other changes:
- Group functions into groups (I/O, process management etc.).
- Synchronize definitions against Microsoft documentation to use the
proper parameter types/names.
- Break all functions with parameters over multiple lines.
Instead of calling the dynamically loaded kernel32.GetLastError, we can extract it from the TEB.
As shown by [Wine](34b1606019/include/winternl.h (L439)), the last error lives at offset 0x34 of the TEB in 32-bit Windows and at offset 0x68 in 64-bit Windows.
Note that the original `cgroup_storage` MapType has been deprecated,
so renamed to `cgroup_storage_deprecated`.
Signed-off-by: Tw <tw19881113@gmail.com>
In my first [try](https://github.com/ziglang/zig/pull/20224) to fix
20212 I didn't reproduce bug on required kernel (6.9.2) and wrongly
concluded that first two completions have different order on newer
kernel.
On my current kernel (6.5.0) order of completions is: send1, recv,
send2. On 6.9.2 order is send1, send2, recv. This fix allows second two
completions to arrive in any order.
Tested on both kernels.
Fixes: #20212
Deprecated aliases that are now compile errors:
- `std.fs.MAX_PATH_BYTES` (renamed to `std.fs.max_path_bytes`)
- `std.mem.tokenize` (split into `tokenizeAny`, `tokenizeSequence`, `tokenizeScalar`)
- `std.mem.split` (split into `splitSequence`, `splitAny`, `splitScalar`)
- `std.mem.splitBackwards` (split into `splitBackwardsSequence`, `splitBackwardsAny`, `splitBackwardsScalar`)
- `std.unicode`
+ `utf16leToUtf8Alloc`, `utf16leToUtf8AllocZ`, `utf16leToUtf8`, `fmtUtf16le` (all renamed to have capitalized `Le`)
+ `utf8ToUtf16LeWithNull` (renamed to `utf8ToUtf16LeAllocZ`)
- `std.zig.CrossTarget` (moved to `std.Target.Query`)
Deprecated `lib/std/std.zig` decls were deleted instead of made a `@compileError` because the `refAllDecls` in the test block would trigger the `@compileError`. The deleted top-level `std` namespaces are:
- `std.rand` (renamed to `std.Random`)
- `std.TailQueue` (renamed to `std.DoublyLinkedList`)
- `std.ChildProcess` (renamed/moved to `std.process.Child`)
This is not exhaustive. Deprecated aliases that I didn't touch:
+ `std.io.*`
+ `std.Build.*`
+ `std.builtin.Mode`
+ `std.zig.c_translation.CIntLiteralRadix`
+ anything in `src/`
`Elf*_Rela` relocations store their argument in `r_addend`, including for `R_*_RELATIVE` relocations. Unlike `Elf*_Rel` relocations, they are not applied as a delta to the destination virtual address. Instead, they are computed from `base_address + r_addend` directly.
We are posting two submission (zero copy send and receive) and then
reading two completions. There is no guarantee that those completions
will be in the order of submissions.
This test was expecting fist send completion then receive.
Fix is allowing them to come other way too.
- From lib/libc/include/any-windows-any/wincon.h#L235
- See also https://learn.microsoft.com/en-us/windows/console/setconsolemode
- Also add DISABLE_NEWLINE_AUTO_RETURN constant which will be used by SetConsoleMode in lib/std/os/windows.
Co-authored-by: Kexy Biscuit <kexybiscuit@biscuitt.in>
A volume can be mounted as a NTFS path, e.g. as C:\Mnt\Foo. In that case, IOCTL_MOUNTMGR_QUERY_POINTS gives us a mount point with a symlink value something like `\??\Volume{383da0b0-717f-41b6-8c36-00500992b58d}`. In order to get the `C:\Mnt\Foo` path, we can query the mountmgr again using IOCTL_MOUNTMGR_QUERY_DOS_VOLUME_PATH.
Fixes#19731
> Note: This first part is mostly a rephrasing of https://flatt.tech/research/posts/batbadbut-you-cant-securely-execute-commands-on-windows/
> See that article for more details
On Windows, it is possible to execute `.bat`/`.cmd` scripts via CreateProcessW. When this happens, `CreateProcessW` will (under-the-hood) spawn a `cmd.exe` process with the path to the script and the args like so:
cmd.exe /c script.bat arg1 arg2
This is a problem because:
- `cmd.exe` has its own, separate, parsing/escaping rules for arguments
- Environment variables in arguments will be expanded before the `cmd.exe` parsing rules are applied
Together, this means that (1) maliciously constructed arguments can lead to arbitrary command execution via the APIs in `std.process.Child` and (2) escaping according to the rules of `cmd.exe` is not enough on its own.
A basic example argv field that reproduces the vulnerability (this will erroneously spawn `calc.exe`):
.argv = &.{ "test.bat", "\"&calc.exe" },
And one that takes advantage of environment variable expansion to still spawn calc.exe even if the args are properly escaped for `cmd.exe`:
.argv = &.{ "test.bat", "%CMDCMDLINE:~-1%&calc.exe" },
(note: if these spawned e.g. `test.exe` instead of `test.bat`, they wouldn't be vulnerable; it's only `.bat`/`.cmd` scripts that are vulnerable since they go through `cmd.exe`)
Zig allows passing `.bat`/`.cmd` scripts as `argv[0]` via `std.process.Child`, so the Zig API is affected by this vulnerability. Note also that Zig will search `PATH` for `.bat`/`.cmd` scripts, so spawning something like `foo` may end up executing `foo.bat` somewhere in the PATH (the PATH searching of Zig matches the behavior of cmd.exe).
> Side note to keep in mind: On Windows, the extension is significant in terms of how Windows will try to execute the command. If the extension is not `.bat`/`.cmd`, we know that it will not attempt to be executed as a `.bat`/`.cmd` script (and vice versa). This means that we can just look at the extension to know if we are trying to execute a `.bat`/`.cmd` script.
---
This general class of problem has been documented before in 2011 here:
https://learn.microsoft.com/en-us/archive/blogs/twistylittlepassagesallalike/everyone-quotes-command-line-arguments-the-wrong-way
and the course of action it suggests for escaping when executing .bat/.cmd files is:
- Escape first using the non-cmd.exe rules
- Then escape all cmd.exe 'metacharacters' (`(`, `)`, `%`, `!`, `^`, `"`, `<`, `>`, `&`, and `|`) with `^`
However, escaping with ^ on its own is insufficient because it does not stop cmd.exe from expanding environment variables. For example:
```
args.bat %PATH%
```
escaped with ^ (and wrapped in quotes that are also escaped), it *will* stop cmd.exe from expanding `%PATH%`:
```
> args.bat ^"^%PATH^%^"
"%PATH%"
```
but it will still try to expand `%PATH^%`:
```
set PATH^^=123
> args.bat ^"^%PATH^%^"
"123"
```
The goal is to stop *all* environment variable expansion, so this won't work.
Another problem with the ^ approach is that it does not seem to allow all possible command lines to round trip through cmd.exe (as far as I can tell at least).
One known example:
```
args.bat ^"\^"key^=value\^"^"
```
where args.bat is:
```
@echo %1 %2 %3 %4 %5 %6 %7 %8 %9
```
will print
```
"\"key value\""
```
(it will turn the `=` into a space for an unknown reason; other minor variations do roundtrip, e.g. `\^"key^=value\^"`, `^"key^=value^"`, so it's unclear what's going on)
It may actually be possible to escape with ^ such that every possible command line round trips correctly, but it's probably not worth the effort to figure it out, since the suggested mitigation for BatBadBut has better roundtripping and leads to less garbled command lines overall.
---
Ultimately, the mitigation used here is the same as the one suggested in:
https://flatt.tech/research/posts/batbadbut-you-cant-securely-execute-commands-on-windows/
The mitigation steps are reproduced here, noted with one deviation that Zig makes (following Rust's lead):
1. Replace percent sign (%) with %%cd:~,%.
2. Replace the backslash (\) in front of the double quote (") with two backslashes (\\).
3. Replace the double quote (") with two double quotes ("").
4. ~~Remove newline characters (\n).~~
- Instead, `\n`, `\r`, and NUL are disallowed and will trigger `error.InvalidBatchScriptArg` if they are found in `argv`. These three characters do not roundtrip through a `.bat` file and therefore are of dubious/no use. It's unclear to me if `\n` in particular is relevant to the BatBadBut vulnerability (I wasn't able to find a reproduction with \n and the post doesn't mention anything about it except in the suggested mitigation steps); it just seems to act as a 'end of arguments' marker and therefore anything after the `\n` is lost (and same with NUL). `\r` seems to be stripped from the command line arguments when passed through a `.bat`/`.cmd`, so that is also disallowed to ensure that `argv` can always fully roundtrip through `.bat`/`.cmd`.
5. Enclose the argument with double quotes (").
The escaped command line is then run as something like:
cmd.exe /d /e:ON /v:OFF /c "foo.bat arg1 arg2"
Note: Previously, we would pass `foo.bat arg1 arg2` as the command line and the path to `foo.bat` as the app name and let CreateProcessW handle the `cmd.exe` spawning for us, but because we need to pass `/e:ON` and `/v:OFF` to cmd.exe to ensure the mitigation is effective, that is no longer tenable. Instead, we now get the full path to `cmd.exe` and use that as the app name when executing `.bat`/`.cmd` files.
---
A standalone test has also been added that tests two things:
1. Known reproductions of the vulnerability are tested to ensure that they do not reproduce the vulnerability
2. Randomly generated command line arguments roundtrip when passed to a `.bat` file and then are passed from the `.bat` file to a `.exe`. This fuzz test is as thorough as possible--it tests that things like arbitrary Unicode codepoints and unpaired surrogates roundtrip successfully.
Note: In order for the `CreateProcessW` -> `.bat` -> `.exe` roundtripping to succeed, the .exe must split the arguments using the post-2008 C runtime argv splitting implementation, see https://github.com/ziglang/zig/pull/19655 for details on when that change was made in Zig.