Functions generated by Fiat-crypto are not prefixed by their description any more. This matches an upstream change.
We can now use a single type for different curves and implementations.
The field type is now generic, so we can properly handle the base field and scalars without code duplication.
Uses verified code generated by fiat-crypto for field arithmetic, and complete formulas to avoid side channels.
There's still plenty of room for optimizations, especially with a fixed base. But this gives us a framework to easily add other similar curves.
Conflicts:
lib/std/crypto/25519/field.zig
lib/std/crypto/poly1305.zig
I had resolved those by removing `comptime` but master branch decided to
make the parameters `comptime`.
This also pulls in the updated default `zig build` install directory.
* 25519: remove unused const, safeguard against unreduced scalars
No behavior change, but it makes the existing code better match
the forthcoming code for other curves.
Rename nonAdjacentForm() to slide(), remove an unneeded and
confusing constant, and do a reduction in slide() if 257 bits would
be required.
Note that in all the high-level functions, the top bit is always
cleared, so the reduction is never necessary. But since the low-level
functions are public, the check is a safe thing to have.
* 25519: make identityElement public, deprecate neutralElement
Also fix a few comments by the way.
A little function to complement the existing crypto.utils.timingSafeEql
function with a way to compare large numbers serialized as arrays.
This is useful to compare nonces and to check that group elements are
in canonical form.
Absence of side channels remains a best effort, reusing the common
pattern we use elsewhere.
* `comptime const` is redundant
* don't use `extern enum`; specify a tag type.
`extern enum` is only when you need tags to alias. But aliasing tags
is a smell. I will be making a proposal shortly to remove `extern enum`
from the language.
* there is no such thing as `packed enum`.
* instead of `catch |_|`, omit the capture entirely.
* unused function definition with missing parameter name
* using `try` outside of a function or test
std/crypto: use finer-grained error sets in function signatures
Returning the `crypto.Error` error set for all crypto operations
was very convenient to ensure that errors were used consistently,
and to avoid having multiple error names for the same thing.
The flipside is that callers were forced to always handle all
possible errors, even those that could never be returned by a
function.
This PR makes all functions return union sets of the actual errors
they can return.
The error sets themselves are all limited to a single error.
Larger sets are useful for platform-specific APIs, but we don't have
any of these in `std/crypto`, and I couldn't find any meaningful way
to build larger sets.
See https://eprint.iacr.org/2019/1492.pdf for justification.
8 rounds ChaCha20 provides a 2.5x speedup, and is still believed
to be safe.
Round-reduced versions are actually deployed (ex: Android filesystem
encryption), and thanks to the magic of comptime, it doesn't take much
to support them.
This also makes the ChaCha20 code more consistent with the Salsa20 code,
removing internal functions that were not part of the public API any more.
No breaking changes; the public API remains backwards compatible.
Let's follow the road paved by the removal of 'z'/'Z', the Formatter
pattern is nice enough to let us remove the remaining four special cases
and declare u8 slices free from any special casing!
OCB has been around for a long time.
It's simpler, faster and more secure than AES-GCM.
RFC 7253 was published in 2014. OCB also won the CAESAR competition
along with AEGIS.
It's been implemented in OpenSSL and other libraries for years.
So, why isn't everybody using it instead of GCM? And why don't we
have it in Zig already?
The sad reason for this was patents. GCM was invented only to work
around these patents, and for all this time, OCB was that nice
thing that everybody knew existed but that couldn't be freely used.
That just changed. The OCB patents are now abandoned, and OCB's
author just announced that OCB was officially public domain.
Everybody gets what they want!
* AT_RANDOM is completely ignored.
* On Linux, MADV_WIPEONFORK is used to provide fork safety.
* On pthread systems, `pthread_atfork` is used to provide fork safety.
* For systems that do not have the capability to provide fork safety,
the implementation falls back to calling getrandom() every time.
* If madvise is unavailable or returns an error, or pthread_atfork
fails for whatever reason, it falls back to calling getrandom() every
time.
* Applications may choose to opt-out of fork safety.
* Applications may choose to opt-in to unconditionally calling
getrandom() for every call to std.crypto.random.fillFn.
* Added `std.meta.globalOption`.
* Added `std.os.madvise` and related bits.
* Bumped up the size of the main thread TLS buffer. See the comment
there for justification.
* Simpler hot path in TLS initialization.
* get rid of the pointless fences
* make seed_len 16 instead of 32, which is accurate since it was
already padding the rest anyway; now we do 1 pad instead of 2.
* secureZero to clear the AT_RANDOM auxval
* add a flag root source files can use to disable the start code. This
is in case people want to opt out of the initialization when they
don't depend on it.
std.crypto.random
* cross platform, even freestanding
* can't fail. on initialization for some systems requires calling
os.getrandom(), in which case there are rare but theoretically
possible errors. The code panics in these cases, however the
application may choose to override the default seed function and then
handle the failure another way.
* thread-safe
* supports the full Random interface
* cryptographically secure
* no syscall required to initialize on Linux (AT_RANDOM)
* calls arc4random on systems that support it
`std.crypto.randomBytes` is removed in favor of `std.crypto.random.bytes`.
I moved some of the Random implementations into their own files in the
interest of organization.
stage2 no longer requires passing a RNG; instead it uses this API.
Closes#6704
Transforming scalars to non-adjacent form shrinks the number of
precomputations down to 8, while still processing 4 bits at a time.
However, real-world benchmarks show that the transform is only
really useful with large precomputation tables and for batch
signature verification. So, do it for batch verification only.
https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve
This is quite an important feature to have since many other standards
being worked on depend on this operation.
Brings a couple useful arithmetic operations on field elements by the way.
This PR also adds comments to the functions we expose in 25519/field
so that they can appear in the generated documentation.
We currently have ciphers optimized for performance, for
compatibility, for size and for specific CPUs.
However we lack a class of ciphers that is becoming increasingly
important, as Zig is being used for embedded systems, but also as
hardware-level side channels keep being found on (Intel) CPUs.
Here is ISAPv2, a construction specifically designed for resilience
against leakage and fault attacks.
ISAPv2 is obviously not optimized for performance, but can be an
option for highly sensitive data, when the runtime environment cannot
be trusted.