Basically everything that has a direct replacement or no uses left.
Notable omissions:
- std.ArrayHashMap: Too much fallout, needs a separate cleanup.
- std.debug.runtime_safety: Too much fallout.
- std.heap.GeneralPurposeAllocator: Lots of references to it remain, not
a simple find and replace as "debug allocator" is not equivalent to
"general purpose allocator".
- std.io.Reader: Is being reworked at the moment.
- std.unicode.utf8Decode(): No replacement, needs a new API first.
- Manifest backwards compat options: Removal would break test data used
by TestFetchBuilder.
- panic handler needs to be a namespace: Many tests still rely on it
being a function, needs a separate cleanup.
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
This is necessary in two cases:
* On POSIX, the exe path (`argv[0]`) must contain a path separator
* Some programs might treat a file named e.g. `-foo` as a flag, which
can be avoided by passing `./-foo`
Rather than detecting these two cases, just always include the prefix;
there's no harm in it.
Also, if the cwd is specified, include it in the manifest. If the user
has set the cwd of a Run step, it is clearly because this affects the
behavior of the executable somehow, so that cwd path should be a part of
the step's manifest.
Resolves: #24216
Also add a standalone test which covers the `-fentry` case. It does this
by performing two reproducible compilations which are identical other
than having different entry points, and checking whether the emitted
binaries are identical (they should *not* be).
Resolves: #23869
`std.Build.Step.ConfigHeader` emits a *directory* containing a config
header under a given sub path, but there's no good way to actually
access that directory as a `LazyPath` in the configure phase. This is
silly; it's perfectly valid to refer to that directory, perhaps to
explicitly pass as a "-I" flag to a different toolchain invoked via a
`Step.Run`. So now, instead of the `GeneratedFile` being the actual
*file*, it should be that *directory*, i.e. `cache/o/<digest>`. We can
then easily get the *file* if needed just by using `LazyPath.path` to go
"deeper", which there is a helper function for.
The legacy `getOutput` function is now a deprecated alias for
`getOutputFile`, and `getOutputDir` is introduced.
`std.Build.Module.IncludeDir.appendZigProcessFlags` needed a fix after
this change, so I took the opportunity to refactor it a little. I was
looking at this function while working on ziglang/translate-c yesterday
and realised it could be expressed much more simply -- particularly
after the `ConfigHeader` change here.
I had to update the test `standalone/cmakedefine/` -- it turns out this
test was well and truly reaching into build system internals, and doing
horrible not-really-allowed stuff like overriding the `makeFn` of a
`TopLevelStep`. To top it all off, the test forgot to set
`b.default_step` to its "test" step, so the test never even ran. I've
refactored it to follow accepted practices and to actually, like, work.
File arguments added to `std.Build.Step.Run` with e.g. `addFileArg` are
not necessarily passed as absolute paths. It used to be the case that
they were as a consequence of an unnecessary path conversion done by the
frontend, but this no longer happens, at least not always, so these
tests were sometimes failing when run locally. Therefore, the standalone
tests must handle cwd-relative CLI paths correctly.
By returning an initialized sigset (instead of taking the set as an output
parameter), these functions can be used to directly initialize the `mask`
parameter of a `Sigaction` instance.
When linking a libc, Zig should defer to the C library for sigset
operations. The pre-filled constants signal sets (empty_sigset,
filled_sigset) are not compatible with C library initialization, so remove
them and use the runtime `sigemptyset` and `sigfillset` methods to
initialize any sigset.
This is fairly straightforward; the actual compiler changes are limited
to the CLI, since `Compilation` already supports this combination.
A new `std.Build` API is introduced to allow representing this. By
passing the `emit_object` option to `std.Build.addTest`, you get a
`Step.Compile` which emits an object file; you can then use that as you
would any other object, such as either installing it for external use,
or linking it into another step.
A standalone test is added to cover the build system API. It builds a
test into an object, and links it into a final executable, which it then
runs.
Using this build system mechanism prevents the build system from
noticing that you're running a `zig test`, so the build runner and test
runner do not communicate over stdio. However, that's okay, because the
real-world use cases for this feature don't want to do that anyway!
Resolves: #23374
Context:
- https://blog.rust-lang.org/2024/09/04/cve-2024-43402.html
- https://github.com/rust-lang/rust/pull/129962
Note that the Rust test case for this checks that it executes the batch file successfully with the proper mitigation in place, while the Zig test case expects a FileNotFound error. This is because of a PATHEXT optimization that Zig does, and that Rust doesn't do because Rust doesn't do PATHEXT appending (it only appends .exe specifically). See the added comment for more details.
Adds a CreateProcessFlags packed struct for all the possible flags to
CreateProcessW on windows. In addition, propagates the existing
`start_suspended` option in std.process.Child which was previously only
used on Darwin. Also adds a `create_no_window` option to std.process.Child
which is a commonly used flag for launching console executables on
windows without causing a new console window to "pop up".
Functions like isMinGW() and isGnuLibC() have a good reason to exist: They look
at multiple components of the target. But functions like isWasm(), isDarwin(),
isGnu(), etc only exist to save 4-8 characters. I don't think this is a good
enough reason to keep them, especially given that:
* It's not immediately obvious to a reader whether target.isDarwin() means the
same thing as target.os.tag.isDarwin() precisely because isMinGW() and similar
functions *do* look at multiple components.
* It's not clear where we would draw the line. The logical conclusion before
this commit would be to also wrap Arch.isX86(), Os.Tag.isSolarish(),
Abi.isOpenHarmony(), etc... this obviously quickly gets out of hand.
* It's nice to just have a single correct way of doing something.