The big endian RISC-V effort is mostly driven by MIPS (the company) which is
pivoting to RISC-V, and presumably needs a big endian variant to fill the niche
that big endian MIPS (the ISA) did.
GCC already supports these targets, but LLVM support will only appear in 22;
this commit just adds the necessary target knowledge and checks on our end.
This API is based around the unsound idea that a process can perform
checked virtual memory loads to prevent crashing. This depends on
OS-specific APIs that may be unavailable, disabled, or impossible due to
virtualization.
It also makes collecting stack traces ridiculously slow, which is a
problem for users of DebugAllocator - in other words, everybody, all the
time. It also makes strace go from being superbly clean to being awful.
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
There are two concepts here: one for whether dwarf supports unwinding on
that target, and another for whether the Zig standard library
implements it yet.
...which have a ucontext_t but not a PC register. The current stack
unwinding implementation does not yet support this architecture.
Also fix name of `std.debug.SelfInfo.openSelf` to remove redundancy.
Also removed this hook into root providing an "openSelfDebugInfo"
function. Sorry, this debugging code is not of sufficient quality to
offer a plugin API right now.
After this commit:
`std.debug.SelfInfo` is a cross-platform abstraction for the current
executable's own debug information, with a goal of minimal code bloat
and compilation speed penalty.
`std.debug.Dwarf` does not assume the current executable is itself the
thing being debugged, however, it does assume the debug info has the
same CPU architecture and OS as the current executable. It is planned to
remove this limitation.
std.debug.Dwarf is the parsing/decoding logic. std.dwarf remains the
unopinionated types and bits alone.
If you look at this diff you can see a lot less redundancy in
namespaces.