Right now, if you override the build root with `--build-root`, then
`Run` steps can fail to execute because of incorrect path handling in
the compiler: `std.process.Child` gets a cwd-relative path, but also has
its cwd set to the build root. The latter behavior is really weird; it
doesn't match my expectations, nor does it match how we spawn child
`zig` processes. So, this commit makes the child process inherit the
build runner's cwd, as `LazyPath.getPath2` *expects* it to.
After investigating, this behavior dates all the way back to 2017; it
was introduced in 4543413. So, there isn't any clear/documented reason
for this; it should be safe to revert, since under the modern `LazyPath`
system it is strictly a bug AFAICT.
This function was broken, because it took ownership of the buffer on
error *sometimes*, in a way which the caller could not tell. Rather than
trying to be clever, it's easier to just follow the same interface as
all other `addFilePost` methods, and not take ownership of the path.
This is a breaking change. The next commits will apply it to the
compiler, which is the only user of this function in the ziglang/zig
repository.
Aside from adding comments to document the logic in `Cache.Manifest.hit`
better, this commit fixes two serious bugs.
The first, spotted by Andrew, is that when upgrading from a shared to an
exclusive lock on the manifest file, we do not seek it back to the
start. This is a simple fix.
The second is more subtle, and has to do with the computation of file
digests. Broadly speaking, the goal of the main loop in `hit` is to
iterate the files listed in the manifest file, and check if they've
changed, based on stat and a file hash. While doing this, the
`bin_digest` field of `std.Build.Cache.File`, which is initially
`undefined`, is populated for all files, either straight from the
manifest (if the stat matches) or recomputed from the file on-disk. This
file digest is then used to update `man.hash.hasher`, which is building
the final hash used as, for instance, the output directory name when the
compiler emits into the cache directory. When `hit` returns a cache
miss, it is expected that `man.hash.hasher` includes the digests of all
"initial files"; that is, those which have been already added with e.g.
`addFilePath`, but not those which will later be added with
`addFilePost` (even though the manifest file has told us about some such
files). Previously, `hit` was using the `unhit` function to do this in a
few cases. However, this is incorrect, because `hit` assumes that all
files already have their `bin_digest` field populated; this function is
only valid to call *after* `hit` returns. Instead, we need to actually
compute the hashes which haven't yet been populated. Even if this logic
has been working, there was still a bug here, because we called `unhit`
when upgrading from a shared to an exclusive lock, writing the
(potentially `undefined`) file digests, but the loop itself writes the
file digests *again*! All in all, the hashing logic here was actually
incredibly broken.
I've taken the opportunity to restructure this section of the code into
what I think is a more readable format. A new function,
`hitWithCurrentLock`, uses the open manifest file to try and find a
cache hit. It returns a tagged union which, in the miss case, tells the
caller (`hit`) how many files already have their hash populated. This
avoids redundant work recomputing the same hash multiple times in
situations where the lock needs upgrading. This also eliminates the
outer loop from `hit`, which was a little confusing because it iterated
no more than twice!
The bugs fixed here could manifest in several different ways depending
on how contended file locks were satisfied. Most notably, on a cache
miss, the Zig compiler might have written the compilation output to the
incorrect directory (because it incorrectly constructed a hash using
`undefined` or repeated file digests), resulting in all future hits on
this manifest causing `error.FileNotFound`. This is #23110. I have been
able to reproduce #23110 on `master`, and have not been able to after
this commit, so I am relatively sure this commit resolves that issue.
Resolves: #23110
* Accept -fsanitize-c=trap|full in addition to the existing form.
* Accept -f(no-)sanitize-trap=undefined in zig cc.
* Change type of std.Build.Module.sanitize_c to std.zig.SanitizeC.
* Add some missing Compilation.Config fields to the cache.
Closes#23216.
This is fairly straightforward; the actual compiler changes are limited
to the CLI, since `Compilation` already supports this combination.
A new `std.Build` API is introduced to allow representing this. By
passing the `emit_object` option to `std.Build.addTest`, you get a
`Step.Compile` which emits an object file; you can then use that as you
would any other object, such as either installing it for external use,
or linking it into another step.
A standalone test is added to cover the build system API. It builds a
test into an object, and links it into a final executable, which it then
runs.
Using this build system mechanism prevents the build system from
noticing that you're running a `zig test`, so the build runner and test
runner do not communicate over stdio. However, that's okay, because the
real-world use cases for this feature don't want to do that anyway!
Resolves: #23374
This change fixes false-positive cache hits for run steps that get run
with different sets of environment variables due the the environment map
being excluded from the cache hash.
The code did one useless thing and two wrong things:
- ref counting was basically a noop
- last_dir_fd was chosen from the wrong index and also under the wrong
condition
This caused regular crashes on macOS which are now gone.
This reverts commit dea72d15da, reversing
changes made to ab381933c8.
The changeset does not work as advertised and does not have sufficient
test coverage.
Reopens#22822
Inheriting allow-deprecation from parent modules doesn't make too much
sense, so instead make them default to disallow unless otherwise
specified. This allows build system to avoid redundant
`-fno-allow-deprecated` args.
This makes the generated CLIs smaller, and makes zig1.wasm update not
needed.
Also represented `is_root` differently (moved to field of graph).
This can also be extended to ELF later as it means roughly the same thing there.
This addresses the main issue in #21721 but as I don't have a macOS machine to
do further testing on, I can't confirm whether zig cc is able to pass the entire
cgo test suite after this commit. It can, however, cross-compile a basic program
that uses cgo to x86_64-macos-none which previously failed due to lack of -x
support. Unlike previously, the resulting symbol table does not contain local
symbols (such as C static functions).
I believe this satisfies the related donor bounty: https://ziglang.org/news/second-donor-bounty
Functions like isMinGW() and isGnuLibC() have a good reason to exist: They look
at multiple components of the target. But functions like isWasm(), isDarwin(),
isGnu(), etc only exist to save 4-8 characters. I don't think this is a good
enough reason to keep them, especially given that:
* It's not immediately obvious to a reader whether target.isDarwin() means the
same thing as target.os.tag.isDarwin() precisely because isMinGW() and similar
functions *do* look at multiple components.
* It's not clear where we would draw the line. The logical conclusion before
this commit would be to also wrap Arch.isX86(), Os.Tag.isSolarish(),
Abi.isOpenHarmony(), etc... this obviously quickly gets out of hand.
* It's nice to just have a single correct way of doing something.
* fix merge conflicts
* rename the declarations
* reword documentation
* extract FixedBufferAllocator to separate file
* take advantage of locals
* remove the assertion about max alignment in Allocator API, leaving it
Allocator implementation defined
* fix non-inline function call in start logic
The GeneralPurposeAllocator implementation is totally broken because it
uses global state but I didn't address that in this commit.
heap.zig: define new default page sizes
heap.zig: add min/max_page_size and their options
lib/std/c: add miscellaneous declarations
heap.zig: add pageSize() and its options
switch to new page sizes, especially in GPA/stdlib
mem.zig: remove page_size
Currently -freference-trace only works when running from a terminal.
This is annoying if you're running in another environment or if you redirect the output.
But -freference-trace also works fine without the color, so change how the build runner is interpreting this option.
`std.Build.Step.Run` makes the very reasonable assumption that
`error.InvalidExe` will be reported on `spawn` if it will happen.
However, this property does not currently hold on POSIX targets. This
is, through a slightly convoluted series of events, partially
responsible for the sporadic `BrokenPipe` errors we've been seeing more
and more in CI runs.
Making `spawn` wait for the child to exec in the POSIX path introduces
a block of up to 400us. So, instead of doing that, we add a new API for
this particular case: `waitForSpawn`. This function is a nop on Windows,
but on POSIX it blocks until the child successfully (or otherwise) calls
`execvpe`, and reports the error if necessary. `std.Build.Step.Run`
calls this function, so that it can get `error.InvalidExe` when it wants
it.
I'm not convinced that this API is optimal. However, I think this entire
API needs to be either heavily refactored or straight-up redesigned
(related: #22504), so I'm not too worried about hitting the perfect API:
I'd rather just fix this bug for now, and figure out the long-term goal
a bit later.
The previous logic here was trying to assume that custom test runners
never used `std.zig.Server` to communicate with the build runner;
however, it was flawed, because modifying the `test_runner` field on
`Step.Compile` would not update this flag. That might have been
intentional (allowing a way for the user to specify a custom test runner
which *does* use the compiler server protocol), but if so, it was a
flawed API, since it was too easy to update one field without updating
the other.
Instead, bundle these two pieces of state into a new type
`std.Build.Step.Compile.TestRunner`. When passing a custom test runner,
you are now *provided* to specify whether it is a "simple" runner, or
whether it uses the compiler server protocol.
This is a breaking change, but is unlikely to affect many people, since
custom test runners are seldom used in the wild.