Commit graph

13 commits

Author SHA1 Message Date
Alex Rønne Petersen
7857bbd116 std.crypto.ascon: disable Ascon-AEAD128 test on RISC-V with V support 2025-09-20 19:05:32 +02:00
Frank Denis
4406127cca
std.crypto: add Ascon-AEAD, Ascon-Hash, Ascon-CHash (#25239)
Ascon is the family of cryptographic constructions standardized by NIST
for lightweight cryptography.

The Zig standard library already included the Ascon permutation itself,
but higher-level constructions built on top of it were intentionally
postponed until NIST released the final specification.

That specification has now been published as NIST SP 800-232:
https://csrc.nist.gov/pubs/sp/800/232/final

With this publication, we can now confidently include these constructions
in the standard library.
2025-09-17 19:59:55 -07:00
Andrew Kelley
e7b18a7ce6 std.crypto: remove inline from most functions
To quote the language reference,

It is generally better to let the compiler decide when to inline a
function, except for these scenarios:

* To change how many stack frames are in the call stack, for debugging
  purposes.
* To force comptime-ness of the arguments to propagate to the return
  value of the function, as in the above example.
* Real world performance measurements demand it. Don't guess!

Note that inline actually restricts what the compiler is allowed to do.
This can harm binary size, compilation speed, and even runtime
performance.

`zig run lib/std/crypto/benchmark.zig -OReleaseFast`
[-before-] vs {+after+}

              md5:        [-990-]        {+998+} MiB/s
             sha1:       [-1144-]       {+1140+} MiB/s
           sha256:       [-2267-]       {+2275+} MiB/s
           sha512:        [-762-]        {+767+} MiB/s
         sha3-256:        [-680-]        {+683+} MiB/s
         sha3-512:        [-362-]        {+363+} MiB/s
        shake-128:        [-835-]        {+839+} MiB/s
        shake-256:        [-680-]        {+681+} MiB/s
   turboshake-128:       [-1567-]       {+1570+} MiB/s
   turboshake-256:       [-1276-]       {+1282+} MiB/s
          blake2s:        [-778-]        {+789+} MiB/s
          blake2b:       [-1071-]       {+1086+} MiB/s
           blake3:       [-1148-]       {+1137+} MiB/s
            ghash:      [-10044-]      {+10033+} MiB/s
          polyval:       [-9726-]      {+10033+} MiB/s
         poly1305:       [-2486-]       {+2703+} MiB/s
         hmac-md5:        [-991-]        {+998+} MiB/s
        hmac-sha1:       [-1134-]       {+1137+} MiB/s
      hmac-sha256:       [-2265-]       {+2288+} MiB/s
      hmac-sha512:        [-765-]        {+764+} MiB/s
      siphash-2-4:       [-4410-]       {+4438+} MiB/s
      siphash-1-3:       [-7144-]       {+7225+} MiB/s
   siphash128-2-4:       [-4397-]       {+4449+} MiB/s
   siphash128-1-3:       [-7281-]       {+7374+} MiB/s
  aegis-128x4 mac:      [-73385-]      {+74523+} MiB/s
  aegis-256x4 mac:      [-30160-]      {+30539+} MiB/s
  aegis-128x2 mac:      [-66662-]      {+67267+} MiB/s
  aegis-256x2 mac:      [-16812-]      {+16806+} MiB/s
   aegis-128l mac:      [-33876-]      {+34055+} MiB/s
    aegis-256 mac:       [-8993-]       {+9087+} MiB/s
         aes-cmac:       2036 MiB/s
           x25519:      [-20670-]      {+16844+} exchanges/s
          ed25519:      [-29763-]      {+29576+} signatures/s
       ecdsa-p256:       [-4762-]       {+4900+} signatures/s
       ecdsa-p384:       [-1465-]       {+1500+} signatures/s
  ecdsa-secp256k1:       [-5643-]       {+5769+} signatures/s
          ed25519:      [-21926-]      {+21721+} verifications/s
          ed25519:      [-51200-]      {+50880+} verifications/s (batch)
 chacha20Poly1305:       [-1189-]       {+1109+} MiB/s
xchacha20Poly1305:       [-1196-]       {+1107+} MiB/s
 xchacha8Poly1305:       [-1466-]       {+1555+} MiB/s
 xsalsa20Poly1305:        [-660-]        {+620+} MiB/s
      aegis-128x4:      [-76389-]      {+78181+} MiB/s
      aegis-128x2:      [-53946-]      {+53495+} MiB/s
       aegis-128l:      [-27219-]      {+25621+} MiB/s
      aegis-256x4:      [-49351-]      {+49542+} MiB/s
      aegis-256x2:      [-32390-]      {+32366+} MiB/s
        aegis-256:       [-8881-]       {+8944+} MiB/s
       aes128-gcm:       [-6095-]       {+6205+} MiB/s
       aes256-gcm:       [-5306-]       {+5427+} MiB/s
       aes128-ocb:       [-8529-]      {+13974+} MiB/s
       aes256-ocb:       [-7241-]       {+9442+} MiB/s
        isapa128a:        [-204-]        {+214+} MiB/s
    aes128-single:  [-133857882-]  {+134170944+} ops/s
    aes256-single:   [-96306962-]   {+96408639+} ops/s
         aes128-8: [-1083210101-] {+1073727253+} ops/s
         aes256-8:  [-762042466-]  {+767091778+} ops/s
           bcrypt:      0.009 s/ops
           scrypt:      [-0.018-]      {+0.017+} s/ops
           argon2:      [-0.037-]      {+0.060+} s/ops
      kyber512d00:     [-206057-]     {+205779+} encaps/s
      kyber768d00:     [-156074-]     {+150711+} encaps/s
     kyber1024d00:     [-116626-]     {+115469+} encaps/s
      kyber512d00:     [-181149-]     {+182046+} decaps/s
      kyber768d00:     [-136965-]     {+135676+} decaps/s
     kyber1024d00:     [-101307-]     {+100643+} decaps/s
      kyber512d00:     [-123624-]     {+123375+} keygen/s
      kyber768d00:      [-69465-]      {+70828+} keygen/s
     kyber1024d00:      [-43117-]      {+43208+} keygen/s
2025-07-13 18:26:13 +02:00
Frank Denis
05a3ac43e9
crypto.ascon: support up to 16 rounds, and update links (#21953)
Initial public draft NIST SP 800-232 specifies Ascon constants
up to 16 rounds for future extensions. So, add these new constants.
2024-11-10 20:43:09 +00:00
Andrew Kelley
54151428e5 std.crypto: better names for everything in utils
std.crypto has quite a few instances of breaking naming conventions.
This is the beginning of an effort to address that.

Deprecates `std.crypto.utils`.
2024-08-09 19:47:06 -07:00
mlugg
51595d6b75
lib: correct unnecessary uses of 'var' 2023-11-19 09:55:07 +00:00
Andrew Kelley
3fc6fc6812 std.builtin.Endian: make the tags lower case
Let's take this breaking change opportunity to fix the style of this
enum.
2023-10-31 21:37:35 -04:00
Jacob Young
d890e81761 mem: fix ub in writeInt
Use inline to vastly simplify the exposed API.  This allows a
comptime-known endian parameter to be propogated, making extra functions
for a specific endianness completely unnecessary.
2023-10-31 21:37:35 -04:00
mlugg
f26dda2117 all: migrate code to new cast builtin syntax
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:

* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
2023-06-24 16:56:39 -07:00
Andrew Kelley
6261c13731 update codebase to use @memset and @memcpy 2023-04-28 13:24:43 -07:00
Frank Denis
dff4bbfd24
Remove Gimli and Xoodoo from the standard library (#14928)
These are great permutations, and there's nothing wrong with them
from a practical security perspective.

However, both were competing in the NIST lightweight crypto
competition.

Gimli didn't pass the 3rd selection round, and is not much used
in the wild besides Zig and libhydrogen. It will never be
standardized and is unlikely to get more traction in the future.

Xoodyak, that Xoodoo is the permutation of, was a finalist.

It has a lot of advantages and *might* be standardized without NIST.
But this is too early to tell, and too risky to commit to it
in a standard library.

For lightweight crypto, Ascon is the one that we know NIST will
standardize and that we can safely rely on from a usage perspective.

Switch to a traditional ChaCha-based CSPRNG, with an Ascon-based one
as an option for constrained systems.

Add a RNG benchmark by the way.

Gimli and Xoodoo served us well. Their code will be maintained,
but outside the standard library.
2023-03-21 04:54:10 +00:00
Andrew Kelley
aeaef8c0ff update std lib and compiler sources to new for loop syntax 2023-02-18 19:17:21 -07:00
Frank Denis
f62e3b8c0d std.crypto: add the Ascon permutation
Ascon has been selected as new standard for lightweight cryptography
in the NIST Lightweight Cryptography competition.

Ascon won over Gimli and Xoodoo.

The permutation is unlikely to change. However, NIST may tweak
the constructions (XOF, hash, authenticated encryption) before
standardizing them. For that reason, implementations of those
are better maintained outside the standard library for now.

In fact, we already had an Ascon implementation in Zig:
`std.crypto.aead.isap` is based on it. While the implementation was
here, there was no public API to access it directly.

So:

- The Ascon permutation is now available as `std.crypto.core.Ascon`,
with everything needed to use it in AEADs and other Ascon-based
constructions
- The ISAP implementation now uses std.crypto.core.Ascon instead of
keeping a private copy
- The default CSPRNG replaces Xoodoo with Ascon. And instead of an
ad-hoc construction, it's using the XOFa mode of the NIST submission.
2023-02-13 02:22:24 -05:00