Previously, various doc comments heavily disagreed with the
implementation on both what lives where on the filesystem at what time,
and how that was represented in code. Notably, the combination of emit
paths outside the cache and `disable_lld_caching` created a kind of
ad-hoc "cache disable" mechanism -- which didn't actually *work* very
well, 'most everything still ended up in this cache. There was also a
long-standing issue where building using the LLVM backend would put a
random object file in your cwd.
This commit reworks how emit paths are specified in
`Compilation.CreateOptions`, how they are represented internally, and
how the cache usage is specified.
There are now 3 options for `Compilation.CacheMode`:
* `.none`: do not use the cache. The paths we have to emit to are
relative to the compiler cwd (they're either user-specified, or
defaults inferred from the root name). If we create any temporary
files (e.g. the ZCU object when using the LLVM backend) they are
emitted to a directory in `local_cache/tmp/`, which is deleted once
the update finishes.
* `.whole`: cache the compilation based on all inputs, including file
contents. All emit paths are computed by the compiler (and will be
stored as relative to the local cache directory); it is a CLI error to
specify an explicit emit path. Artifacts (including temporary files)
are written to a directory under `local_cache/tmp/`, which is later
renamed to an appropriate `local_cache/o/`. The caller (who is using
`--listen`; e.g. the build system) learns the name of this directory,
and can get the artifacts from it.
* `.incremental`: similar to `.whole`, but Zig source file contents, and
anything else which incremental compilation can handle changes for, is
not included in the cache manifest. We don't need to do the dance
where the output directory is initially in `tmp/`, because our digest
is computed entirely from CLI inputs.
To be clear, the difference between `CacheMode.whole` and
`CacheMode.incremental` is unchanged. `CacheMode.none` is new
(previously it was sort of poorly imitated with `CacheMode.whole`). The
defined behavior for temporary/intermediate files is new.
`.none` is used for direct CLI invocations like `zig build-exe foo.zig`.
The other cache modes are reserved for `--listen`, and the cache mode in
use is currently just based on the presence of the `-fincremental` flag.
There are two cases in which `CacheMode.whole` is used despite there
being no `--listen` flag: `zig test` and `zig run`. Unless an explicit
`-femit-bin=xxx` argument is passed on the CLI, these subcommands will
use `CacheMode.whole`, so that they can put the output somewhere without
polluting the cwd (plus, caching is potentially more useful for direct
usage of these subcommands).
Users of `--listen` (such as the build system) can now use
`std.zig.EmitArtifact.cacheName` to find out what an output will be
named. This avoids having to synchronize logic between the compiler and
all users of `--listen`.
Compile log output is now separated based on the `AnalUnit` which
perfomred the `@compileLog` call, so that we can omit the output for
unreferenced ("dead") units. The units are also sorted when collecting
the `ErrorBundle`, so that compile logs are always printed in a
consistent order, like compile errors are. This is important not only
for incremental compilation, but also for parallel analysis.
Resolves: #23609
The real problem here is that Git for Windows has horrendous defaults
which convert LF to CRLF. However, rather than changing this
configuration on the CI runners, it's worth supporting inexplicable CRLF
in these files so that anyone else cloning Zig on Windows doesn't get
unexpected test failures.
Uses of `@embedFile` register dependencies on the corresponding
`Zcu.EmbedFile`. At the start of every update, we iterate all embedded
files and update them if necessary, and invalidate the dependencies if
they changed.
In order to properly integrate with the lazy analysis model, failed
embed files are now reported by the `AnalUnit` which actually used
`@embedFile`; the filesystem error is stored in the `Zcu.EmbedFile`.
An incremental test is added covering incremental updates to embedded
files, and I have verified locally that dependency invalidation is
working correctly.
If no external executor is available for a successful binary, its
execution is silently skipped. This allows the CI to test, to the
fullest extent possible, incremental cross-compilation to targets whose
binaries can't be executed on the host.
This is contained in the `test` step, so is tested by CI.
This commit also includes some enhancements to the `incr-check` tool to
make this work correctly.
A compilation build step for which the binary is not required could not
be compiled previously. There were 2 issues that caused this:
- The compiler communicated only the results of the emitted binary and
did not properly communicate the result if the binary was not emitted.
This is fixed by communicating the final hash of the artifact path (the
hash of the corresponding /o/<hash> directory) and communicating this
instead of the entire path. This changes the zig build --listen protocol
to communicate hashes instead of paths, and emit_bin_path is accordingly
renamed to emit_digest.
- There was an error related to the default llvm object path when
CacheUse.Whole was selected. I'm not really sure why this didn't manifest
when the binary is also emitted.
This was fixed by improving the path handling related to flush() and
emitLlvmObject().
In general, this commit also improves some of the path handling throughout
the compiler and standard library.