The zig way is to let the compiler provide errors, rather than trying to
implement the compiler in the standard library.
I played around with this and found the compile errors to be easier to
comprehend without this logic.
1. Entirely rewrote frexp with generics, reducing the implementation to a single function and enabling parameters of types f80 and f16
2. Expanded upon the tests, making them more descriptive and comprehensive, and automatically generating the test bodies for each floating point type
3. Added a doctest for frexp
Symmetry with parse_float and to hide the implementation from the user.
Additionally, we expose the entire namespace and provide some aliases so
everything is available to a user.
Closes#19366
netbsd fix:
- `Futex.zig:542:56: error: expected error union type, found 'c_int'`
openbsd fix:
- `emutls.zig:10:21: error: root struct of file 'os' has no member named 'abort'`
- `Thread.zig:627:22: error: expected 6 argument(s), found 5`
This was a mistake from day one. This is the wrong abstraction layer to
do this in.
My alternate plan for this is to make all I/O operations require an IO
interface parameter, similar to how allocations require an Allocator
interface parameter today.
A pointer type already has an alignment, so this information does not
need to be duplicated on the function type. This already has precedence
with addrspace which is already disallowed on function types for this
reason. Also fixes `@TypeOf(&func)` to have the correct addrspace and
alignment.
This adds std.debug.SafetyLock and uses it in std.HashMapUnmanaged by
adding lockPointers() and unlockPointers().
This provides a way to detect when an illegal modification has happened and
panic rather than invoke undefined behavior.
The error unions for WindowsDynLib and ElfDynLib do not contain all the possible errors.
So user code that relies on DynLib.Error will fail to compile.
This implementation is now a direct replacement for the `kernel32` one.
New bitflags for named pipes and other generic ones were added based on
browsing the ReactOS sources.
`UNICODE_STRING.Buffer` has also been changed to be nullable, as
this is what makes the implementation work.
This required some changes to places accesssing the buffer after a
`SUCCESS`ful return, most notably `QueryObjectName` which even referred
to it being nullable.
* io_uring: ring mapped buffers
Ring mapped buffers are newer implementation of ring provided buffers, supported
since kernel 5.19. Best described in Jens Axboe [post](https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023#provided-buffers)
This commit implements low level io_uring_*_buf_ring_* functions as mostly
direct translation from liburing. It also adds BufferGroup abstraction over those
low level functions.
* io_uring: add multishot recv to BufferGroup
Once we have ring mapped provided buffers functionality it is possible to use
multishot recv operation. Multishot receive is submitted once, and completions
are posted whenever data arrives on the socket. Received data are placed in a
new buffer from buffer group.
Reference: [io_uring and networking in 2023](https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023#multi-shot)
Getting NOENT for cancel completion result, meaning:
-ENOENT
The request identified by user_data could not be located.
This could be because it completed before the cancelation
request was issued, or if an invalid identifier is used.
https://man7.org/linux/man-pages/man3/io_uring_prep_cancel.3.htmlhttps://github.com/ziglang/zig/actions/runs/6801394000/job/18492139893?pr=17806
Result in cancel/recv cqes are different depending on the kernel.
on older kernel (tested with v6.0.16, v6.1.57, v6.2.12, v6.4.16)
cqe_cancel.err() == .NOENT
cqe_crecv.err() == .NOBUFS
on kernel (tested with v6.5.0, v6.5.7)
cqe_cancel.err() == .SUCCESS
cqe_crecv.err() == .CANCELED