This reverts commit d9d840a33a, reversing
changes made to a04d433094.
This is not an adequate implementation of the missing safety check, as
evidenced by the changes to std.json that are reverted in this commit.
Reopens#18382Closes#18510
This reverts commit f88b523065.
Let's please go through the language proposal process for this change. I
don't see any justification for this breaking change even in the commit
message.
In general, I don't like the idea of std.meta.trait, and so I am
providing some guidance by deleting the entire namespace from the
standard library and compiler codebase.
My main criticism is that it's overcomplicated machinery that bloats
compile times and is ultimately unnecessary given the existence of Zig's
strong type system and reference traces.
Users who want this can create a third party package that provides this
functionality.
closes#18051
This reverts commit 547481c31c.
There is a comment that did not get addressed with this patch, and the
required test cases are not added.
Reopens#17798.
This change allows struct field inits to use layout information
of their own struct without causing a circular dependency.
`semaStructFields` caches the ranges of the init bodies in the `StructType`
trailing data. The init bodies are then resolved by `resolveStructFieldInits`,
which is called before the inits are actually required.
Within the init bodies, the struct decl's instruction is repurposed to refer
to the field type itself. This is to allow us to easily rebuild the inst_map
mapping required for the init body instructions to refer to the field type.
Thanks to @mlugg for the guidance on this one!
This commit introduces the new `ref_coerced_ty` result type into AstGen.
This represents a expression which we want to treat as an lvalue, and
the pointer will be coerced to a given type.
This change gives known result types to many expressions, in particular
struct and array initializations. This allows certain casts to work
which previously required explicitly specifying types via `@as`. It also
eliminates our dependence on anonymous struct types for expressions of
the form `&.{ ... }` - this paves the way for #16865, and also results
in less Sema magic happening for such initializations, also leading to
potentially better runtime code.
As part of these changes, this commit also implements #17194 by
disallowing RLS on explicitly-typed struct and array initializations.
Apologies for linking these changes - it seemed rather pointless to try
and separate them, since they both make big changes to struct and array
initializations in AstGen. The rationale for this change can be found in
the proposal - in essence, performing RLS whilst maintaining the
semantics of the intermediary type is a very difficult problem to solve.
This allowed the problematic `coerce_result_ptr` ZIR instruction to be
completely eliminated, which in turn also simplified the logic for
inferred allocations in Sema - thanks to this, we almost break even on
line count!
In doing this, the ZIR instructions surrounding these initializations
have been restructured - some have been added and removed, and others
renamed for clarity (and their semantics changed slightly). In order to
optimize ZIR tag count, the `struct_init_anon_ref` and
`array_init_anon_ref` instructions have been removed in favour of using
`ref` on a standard anonymous value initialization, since these
instructions are now virtually never used.
Lastly, it's worth noting that this commit introduces a slightly strange
source of generic poison types: in the expression `@as(*anyopaque, &x)`,
the sub-expression `x` has a generic poison result type, despite no
generic code being involved. This turns out to be a logical choice,
because we don't know the result type for `x`, and the generic poison
type represents precisely this case, providing the semantics we need.
Resolves: #16512Resolves: #17194
Currently, the compiler (like @typeName) writes it `fn(...) Type` but
zig fmt writes it `fn (...) Type` (notice the space after `fn`).
This inconsistency is now resolved and function types are consistently
written the zig fmt way. Before this there were more `fn (...) Type`
occurrences than `fn(...) Type` already.
This change implements the following syntax into the compiler:
```zig
const x: u32, var y, foo.bar = .{ 1, 2, 3 };
```
A destructure expression may only appear within a block (i.e. not at
comtainer scope). The LHS consists of a sequence of comma-separated var
decls and/or lvalue expressions. The RHS is a normal expression.
A new result location type, `destructure`, is used, which contains
result pointers for each component of the destructure. This means that
when the RHS is a more complicated expression, peer type resolution is
not used: each result value is individually destructured and written to
the result pointers. RLS is always used for destructure expressions,
meaning every `const` on the LHS of such an expression creates a true
stack allocation.
Aside from anonymous array literals, Sema is capable of destructuring
the following types:
* Tuples
* Arrays
* Vectors
A destructure may be prefixed with the `comptime` keyword, in which case
the entire destructure is evaluated at comptime: this means all `var`s
in the LHS are `comptime var`s, every lvalue expression is evaluated at
comptime, and the RHS is evaluated at comptime. If every LHS is a
`const`, this is not allowed: as with single declarations, the user
should instead mark the RHS as `comptime`.
There are a few subtleties in the grammar changes here. For one thing,
if every LHS is an lvalue expression (rather than a var decl), a
destructure is considered an expression. This makes, for instance,
`if (cond) x, y = .{ 1, 2 };` valid Zig code. A destructure is allowed
in almost every context where a standard assignment expression is
permitted. The exception is `switch` prongs, which cannot be
destructures as the comma is ambiguous with the end of the prong.
A follow-up commit will begin utilizing this syntax in the Zig compiler.
Resolves: #498