This is a misfeature that we inherited from LLVM:
* https://reviews.llvm.org/D61259
* https://reviews.llvm.org/D61939
(`aarch64_32` and `arm64_32` are equivalent.)
I truly have no idea why this triple passed review in LLVM. It is, to date, the
*only* tag in the architecture component that is not, in fact, an architecture.
In reality, it is just an ILP32 ABI for AArch64 (*not* AArch32).
The triples that use `aarch64_32` look like `aarch64_32-apple-watchos`. Yes,
that triple is exactly what you think; it has no ABI component. They really,
seriously did this.
Since only Apple could come up with silliness like this, it should come as no
surprise that no one else uses `aarch64_32`. Later on, a GNU ILP32 ABI for
AArch64 was developed, and support was added to LLVM:
* https://reviews.llvm.org/D94143
* https://reviews.llvm.org/D104931
Here, sanity seems to have prevailed, and a triple using this ABI looks like
`aarch64-linux-gnu_ilp32` as you would expect.
As can be seen from the diffs in this commit, there was plenty of confusion
throughout the Zig codebase about what exactly `aarch64_32` was. So let's just
remove it. In its place, we'll use `aarch64-watchos-ilp32`,
`aarch64-linux-gnuilp32`, and so on. We'll then translate these appropriately
when talking to LLVM. Hence, this commit adds the `ilp32` ABI tag (we already
have `gnuilp32`).
This was added as an architecture to LLVM's target triple parser and the Clang
driver in 2015. No backend ever materialized as far as I can see (same for GCC).
In 2016, other code referring to it started using "Myriad" instead. Ultimately,
all code related to it that isn't in the target triple parser was removed. It
seems to be a real product, just... literally no one seems to know anything
about the ISA. I figure after almost a decade with no public ISA documentation
to speak of, and no LLVM backend to reference, it's probably safe to assume that
we're not going to learn much about this ISA, making it useless for Zig.
See: 1b5767f72b
See: 84a7564b28
See: 8cfe9d8f2a
This was used for LoongArch64, where:
* `gnuf64` -> `ilp32d` / `lp64d` (full hard float)
* `gnuf32` -> `ilp32f` / `lp64f` (hard float for `f32` only)
* `gnusf` -> `ilp32` / `lp64` (soft float)
But Loongson eventually settled on just `gnu` for the first case since that's
what most people will actually be targeting outside embedded scenarios. The
`gnuf32` and `gnusf` specifiers remain in use.
* some manual fixes to generated CPU features code. In the future it
would be nice to make the script do those automatically.
* add to various target OS switches. Some of the values I was unsure of
and added TODO panics, for example in the case of spirv CPU arch.
New OSs:
* XROS
* Serenity
* Vulkan
Removed OSs:
* Ananas
* CloudABI
* Minix
* Contiki
New CPUs:
* spirv
The removed stuff is removed from LLVM but not Zig.
This commit changes how we represent comptime-mutable memory
(`comptime var`) in the compiler in order to implement the intended
behavior that references to such memory can only exist at comptime.
It does *not* clean up the representation of mutable values, improve the
representation of comptime-known pointers, or fix the many bugs in the
comptime pointer access code. These will be future enhancements.
Comptime memory lives for the duration of a single Sema, and is not
permitted to escape that one analysis, either by becoming runtime-known
or by becoming comptime-known to other analyses. These restrictions mean
that we can represent comptime allocations not via Decl, but with state
local to Sema - specifically, the new `Sema.comptime_allocs` field. All
comptime-mutable allocations, as well as any comptime-known const allocs
containing references to such memory, live in here. This allows for
relatively fast checking of whether a value references any
comptime-mtuable memory, since we need only traverse values up to
pointers: pointers to Decls can never reference comptime-mutable memory,
and pointers into `Sema.comptime_allocs` always do.
This change exposed some faulty pointer access logic in `Value.zig`.
I've fixed the important cases, but there are some TODOs I've put in
which are definitely possible to hit with sufficiently esoteric code. I
plan to resolve these by auditing all direct accesses to pointers (most
of them ought to use Sema to perform the pointer access!), but for now
this is sufficient for all realistic code and to get tests passing.
This change eliminates `Zcu.tmp_hack_arena`, instead using the Sema
arena for comptime memory mutations, which is possible since comptime
memory is now local to the current Sema.
This change should allow `Decl` to store only an `InternPool.Index`
rather than a full-blown `ty: Type, val: Value`. This commit does not
perform this refactor.