In the original PR that implemented this (https://github.com/ziglang/zig/pull/14325), it included a list of references for the keychain format. Multiple of those references include the checks that are added in this commit, and empirically this fixes the loading of a real keychain file that was previously failing (it had both a record with offset 0 and a record with cert_size 0).
Fixes#22870
Functions like isMinGW() and isGnuLibC() have a good reason to exist: They look
at multiple components of the target. But functions like isWasm(), isDarwin(),
isGnu(), etc only exist to save 4-8 characters. I don't think this is a good
enough reason to keep them, especially given that:
* It's not immediately obvious to a reader whether target.isDarwin() means the
same thing as target.os.tag.isDarwin() precisely because isMinGW() and similar
functions *do* look at multiple components.
* It's not clear where we would draw the line. The logical conclusion before
this commit would be to also wrap Arch.isX86(), Os.Tag.isSolarish(),
Abi.isOpenHarmony(), etc... this obviously quickly gets out of hand.
* It's nice to just have a single correct way of doing something.
* arm_apcs is the long dead "OABI" which we never had working support for.
* arm_aapcs16_vfp is for arm-watchos-none which is a dead target that we've
dropped support for.
In the MAC finalization function, concatenated tags at odd positions
were not absorbed into the correct lane.
Spotted by a Tigerbeetle regression test and reported by Rafael Batiati
(@batiati) — Thanks!
The check is not needed, since we are already checking for the os
at line 847 and returning at 916 when the check succeeds.
Therefore, at 926, we know the os is not windows.
Using the browser's `console.error`, etc. functions instead of `console.log` produces prettier output in the console. Additionally, `console.error` in particular includes a stack trace, which is useful for debugging where the error occurred.
Additionally, this commit leverages the enhanced logging to delete the separate `panic` function from the JS code and write it in Zig instead.
Additionally, this commit streamlines the way unparseable files are handled, by giving them the AST of an empty file. This avoids bugs in the rest of the Autodoc logic trying to work with invalid ASTs.
When using the LLVM backend, array copies were lowered as calls to
`llvm.memcpy.*` builtin which could cause recursive calls to memcpy to
be generated (observed with `-target x86_64-linux -mcpu x86_64+avx512vl
--debug-rt`).
By instead performing these small fixed-size copies with integers or
vectors the LLVM backend does not generate calls to the `llvm.memcpy`
builtin, and so (with `-fno-builtin`) recursive calls to memcpy will
not be generated by LLVM.
The assertions and (test build) runtime safety have been removed as they
may cause (mutually) recursive calls to memcpy in debug builds since the
panic handler generates calls to llvm.memcpy.
breaking change to the fuzz testing API; it now passes a type-safe
context parameter to the fuzz function.
libfuzzer is reworked to select inputs from the entire corpus.
I tested that it's roughly as good as it was before in that it can find
the panics in the simple examples, as well as achieve decent coverage on
the tokenizer fuzz test.
however I think the next step here will be figuring out why so many
points of interest are missing from the tokenizer in both Debug and
ReleaseSafe modes.
does not quite close#20803 yet since there are some more important
things to be done, such as opening the previous corpus, continuing
fuzzing after finding bugs, storing the length of the inputs, etc.