This type is useful for two things:
* Doing non-local control flow with ucontext.h functions.
* Inspecting machine state in a signal handler.
The first use case is not one we support; we no longer expose bindings to those
functions in the standard library. They're also deprecated in POSIX and, as a
result, not available in musl.
The second use case is valid, but is very poorly served by the standard library.
As evidenced by my changes to std.debug.cpu_context.signal_context_t, users will
be better served rolling their own ucontext_t and especially mcontext_t types
which fit their specific situation. Further, these types tend to evolve
frequently as architectures evolve, and the standard library has not done a good
job keeping up, or even providing them for all supported targets.
Our usage of `ucontext_t` in the standard library was kind of
problematic. We unnecessarily mimiced libc-specific structures, and our
`getcontext` implementation was overkill for our use case of stack
tracing.
This commit introduces a new namespace, `std.debug.cpu_context`, which
contains "context" types for various architectures (currently x86,
x86_64, ARM, and AARCH64) containing the general-purpose CPU registers;
the ones needed in practice for stack unwinding. Each implementation has
a function `current` which populates the structure using inline
assembly. The structure is user-overrideable, though that should only be
necessary if the standard library does not have an implementation for
the *architecture*: that is to say, none of this is OS-dependent.
Of course, in POSIX signal handlers, we get a `ucontext_t` from the
kernel. The function `std.debug.cpu_context.fromPosixSignalContext`
converts this to a `std.debug.cpu_context.Native` with a big ol' target
switch.
This functionality is not exposed from `std.c` or `std.posix`, and
neither are `ucontext_t`, `mcontext_t`, or `getcontext`. The rationale
is that these types and functions do not conform to a specific ABI, and
in fact tend to get updated over time based on CPU features and
extensions; in addition, different libcs use different structures which
are "partially compatible" with the kernel structure. Overall, it's a
mess, but all we need is the kernel context, so we can just define a
kernel-compatible structure as long as we don't claim C compatibility by
putting it in `std.c` or `std.posix`.
This change resulted in a few nice `std.debug` simplifications, but
nothing too noteworthy. However, the main benefit of this change is that
DWARF unwinding---sometimes necessary for collecting stack traces
reliably---now requires far less target-specific integration.
Also fix a bug I noticed in `PageAllocator` (I found this due to a bug
in my distro's QEMU distribution; thanks, broken QEMU patch!) and I
think a couple of minor bugs in `std.debug`.
Resolves: #23801Resolves: #23802
It was possible for `arg6` to be passed as an operand relative to esp.
In that case, the `push` at the top clobbered esp and hence made the
reference to arg6 invalid. This was manifesting in this branch as broken
stack traces on x86-linux due to an `mmap2` syscall accidentally passing
the page offset as non-zero!
This commit fixes a bug introduced in cb0e6d8aa.
Macos uses the BSD definition of msghdr
All linux architectures share a single msghdr definition. Many
architectures had manually inserted padding fields that were endian
specific and some had fields with different integers. This unifies all
architectures to use a single correct msghdr definition.
All the existing code that manipulates `ucontext_t` expects there to be a
glibc-compatible sigmask (1024-bit). The `ucontext_t` struct need to be
cleaned up so the glibc-dependent format is only used when linking
glibc/musl library, but that is a more involved change.
In practice, no Zig code looks at the sigset field contents, so it just
needs to be the right size.
Whatever was in the frame pointer register prior to clone() will no longer be
valid in the child process, so zero it to protect FP-based unwinders. Similarly,
mark the link register as undefined to protect DWARF-based unwinders.
This is only zeroing the frame pointer(s) on Arm/Thumb because of an LLVM
assembler bug: https://github.com/llvm/llvm-project/issues/115891
* common symbols are now public from std.c even if they live in
std.posix
* LOCK is now one of the common symbols since it is the same on 100% of
operating systems.
* flock is now void value on wasi and windows
* std.fs.Dir now uses flock being void as feature detection, avoiding
trying to call it on wasi and windows
It is now composed of these main sections:
* Declarations that are shared among all operating systems.
* Declarations that have the same name, but different type signatures
depending on the operating system. Often multiple operating systems
share the same type signatures however.
* Declarations that are specific to a single operating system.
- These are imported one per line so you can see where they come from,
protected by a comptime block to prevent accessing the wrong one.
Closes#19352 by changing the convention to making types `void` and
functions `{}`, so that it becomes possible to update `@hasDecl` sites
to use `@TypeOf(f) != void` or `T != void`. Happily, this ended up
removing some duplicate logic and update some bitrotted feature
detection checks.
A handful of types have been modified to gain namespacing and type
safety. This is a breaking change.
Oh, and the last usage of `usingnamespace` site is eliminated.
* std.c: consolidate some definitions, making them share code. For
example, freebsd, dragonfly, and openbsd can all share the same
`pthread_mutex_t` definition.
* add type safety to std.c.O
- this caught a bug where mode flags were incorrectly passed as the
open flags.
* 3 fewer uses of usingnamespace keyword
* as per convention, remove purposeless field prefixes from struct field
names even if they have those prefixes in the corresponding C code.
* fix incorrect wasi libc Stat definition
* remove C definitions from incorrectly being in std.os.wasi
* make std.os.wasi definitions type safe
* go through wasi native APIs even when linking libc because the libc
APIs are problematic and wasteful
* don't expose WASI definitions in std.posix
* remove std.os.wasi.rights_t.ALL: this is a footgun. should it be all
future rights too? or only all current rights known? both are
the wrong answer.
After fixing some issues with inline assembly in the C backend, the std
cleanups have the side effect of making these functions compatible with
the backend, allowing it to be used on linux without linking libc.
- Fix unwindFrame using the previous FDE row instead of the current one
- Handle unwinding through noreturn functions
- Add x86-linux getcontext
- Fixup x86_64-linux getcontext not restoring the fp env
- Fix start_addr filtering on x86-windows
There are still a few occurrences of "stage1" in the standard library
and self-hosted compiler source, however, these instances need a bit
more careful inspection to ensure no breakage.