The big endian RISC-V effort is mostly driven by MIPS (the company) which is
pivoting to RISC-V, and presumably needs a big endian variant to fill the niche
that big endian MIPS (the ISA) did.
GCC already supports these targets, but LLVM support will only appear in 22;
this commit just adds the necessary target knowledge and checks on our end.
Basically everything that has a direct replacement or no uses left.
Notable omissions:
- std.ArrayHashMap: Too much fallout, needs a separate cleanup.
- std.debug.runtime_safety: Too much fallout.
- std.heap.GeneralPurposeAllocator: Lots of references to it remain, not
a simple find and replace as "debug allocator" is not equivalent to
"general purpose allocator".
- std.io.Reader: Is being reworked at the moment.
- std.unicode.utf8Decode(): No replacement, needs a new API first.
- Manifest backwards compat options: Removal would break test data used
by TestFetchBuilder.
- panic handler needs to be a namespace: Many tests still rely on it
being a function, needs a separate cleanup.
Alignment and fill options only apply to numbers.
Rework the implementation to mainly branch on the format string rather
than the type information. This is more straightforward to maintain and
more straightforward for comptime evaluation.
Enums support being printed as decimal, hexadecimal, octal, and binary.
`formatInteger` is another possible format method that is
unconditionally called when the value type is struct and one of the
integer-printing format specifiers are used.
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
preparing to rearrange std.io namespace into an interface
how to upgrade:
std.io.getStdIn() -> std.fs.File.stdin()
std.io.getStdOut() -> std.fs.File.stdout()
std.io.getStdErr() -> std.fs.File.stderr()
These conversion routines accept a `round` argument to control how the
result is rounded and return whether the result is exact. Most callers
wanted this functionality and had hacks around it being missing.
Also delete `std.math.big.rational` because it was only being used for
float conversion, and using rationals for that is a lot more complex
than necessary. It also required an allocator, whereas the new integer
routines only need to be passed enough memory to store the result.
The last Intel Quark MCU was released in 2015. Quark was announced to be EOL in
2019, and stopped shipping entirely in 2022.
The OS tag was only meaningful for Intel's weird fork of Linux 3.8.7 with a
special ABI that differs from the regular i386 System V ABI; beyond that, the
CPU itself is just a plain old P54C (i586). We of course keep support for the
CPU itself, just not Intel's Linux fork.
* This has not seen meaningful development for about a decade.
* The Linux kernel port was never upstreamed.
* The glibc port was never upstreamed.
* GCC 15.1 recently deprecated support it.
It may still make sense to support an ILP32 ABI on AArch64 more broadly (which
we already have the Abi.ilp32 tag for), but, to the extent that it even existed
in any "official" sense, the *GNU* ILP32 ABI is certainly dead.
Functions like isMinGW() and isGnuLibC() have a good reason to exist: They look
at multiple components of the target. But functions like isWasm(), isDarwin(),
isGnu(), etc only exist to save 4-8 characters. I don't think this is a good
enough reason to keep them, especially given that:
* It's not immediately obvious to a reader whether target.isDarwin() means the
same thing as target.os.tag.isDarwin() precisely because isMinGW() and similar
functions *do* look at multiple components.
* It's not clear where we would draw the line. The logical conclusion before
this commit would be to also wrap Arch.isX86(), Os.Tag.isSolarish(),
Abi.isOpenHarmony(), etc... this obviously quickly gets out of hand.
* It's nice to just have a single correct way of doing something.
This commit allows using ZON (Zig Object Notation) in a few ways.
* `@import` can be used to load ZON at comptime and convert it to a
normal Zig value. In this case, `@import` must have a result type.
* `std.zon.parse` can be used to parse ZON at runtime, akin to the
parsing logic in `std.json`.
* `std.zon.stringify` can be used to convert arbitrary data structures
to ZON at runtime, again akin to `std.json`.
It doesn't appear that targeting bridgeOS is meaningfully supported by Apple.
Even LLVM/Clang appear to have incomplete support for it, suggesting that Apple
never bothered to upstream that support. So there's really no sense in us
pretending to support this.
The old isARM() function was a portability trap. With the name it had, it seemed
like the obviously correct function to use, but it didn't include Thumb. In the
vast majority of cases where someone wants to ask "is the target Arm?", Thumb
*should* be included.
There are exactly 3 cases in the codebase where we do actually need to exclude
Thumb, although one of those is in Aro and mirrors a check in Clang that is
itself likely a bug. These rare cases can just add an extra isThumb() check.
Once we upgrade to LLVM 20, these should be lowered verbatim rather than to
simply musl. Similarly, the special case in llvmMachineAbi() should go away.
This commit reworks how anonymous struct literals and tuples work.
Previously, an untyped anonymous struct literal
(e.g. `const x = .{ .a = 123 }`) was given an "anonymous struct type",
which is a special kind of struct which coerces using structural
equivalence. This mechanism was a holdover from before we used
RLS / result types as the primary mechanism of type inference. This
commit changes the language so that the type assigned here is a "normal"
struct type. It uses a form of equivalence based on the AST node and the
type's structure, much like a reified (`@Type`) type.
Additionally, tuples have been simplified. The distinction between
"simple" and "complex" tuple types is eliminated. All tuples, even those
explicitly declared using `struct { ... }` syntax, use structural
equivalence, and do not undergo staged type resolution. Tuples are very
restricted: they cannot have non-`auto` layouts, cannot have aligned
fields, and cannot have default values with the exception of `comptime`
fields. Tuples currently do not have optimized layout, but this can be
changed in the future.
This change simplifies the language, and fixes some problematic
coercions through pointers which led to unintuitive behavior.
Resolves: #16865
Abi.android on its own is not enough to know whether soft float or hard float
should be used. In the C world, androideabi is typically used for the soft float
case, so let's go with that.
Note that Android doesn't have a hard float ABI, so no androideabihf.
Closes#21488.