This make `fs.Dir.access` has compatibility like the zig version before.
With this change the `zig build --search-prefix` command would work again like
the zig 0.14 version when used on Ubuntu22.04, kernel version 5.4.
Newer 32-bit Linux targets like 32-bit RISC-V only use the 64-bit
time ABI, with these syscalls having `time64` as their suffix.
This is a stopgap solution in favor of a full audit of `std.os.linux` to
prepare for #4726.
See also #21440 for prior art.
The generic syscall table has different names for syscalls that take a
timespec64 on 32-bit targets, in that it adds the `_time64` suffix.
Similarly, the `_time32` suffix has been removed.
I'm not sure if the existing logic for determining the proper timespec
struct to use was subtly broken, but it should be a good chance to
finish #4726 - we only have 12 years after all...
As for the changes since 6.11..6.16:
6.11:
- x86_64 gets `uretprobe`, a syscall to speed up returning BPF probes.
- Hexagon gets `clone3`, but don't be fooled: it just returns ENOSYS.
6.13:
- The `*xattr` family of syscalls have been enhanced with new `*xattrat`
versions, similar to the other file-based `at` calls.
6.15:
- Atomically create a detached mount tree and set mount options on it.
Finally, this commit also adds the syscall numbers for OpenRISC and maps
it to the `or1k` cpu.
The `atime()`, etc wrappers here expect to create a `std.linux.timespec`
(defined in `linux.zig` to have `isize` fields), so the u32 causes errors:
error: expected type 'isize', found 'u32'
.nsec = self.atim_nsec,
Make the nsec fields signed for consistency with all the other structs,
with and with `std.linux.timespec`.
Also looks like the comment on `__pad1` was copied from `__pad0`, but it
only applies to `__pad0`.
* std.os.uefi.protocol.file: use @alignCast in getInfo() method to fix#24480
* std.os.uefi.protocol.file: pass alignment responsabilities to caller by redefining the buffer type instead of blindly calling @alignCast
LLVM always assumes these are on. Zig backends do not observe them.
If Zig backends want to start using them, they can be introduced, one
arch at a time, with proper documentation.
* std.os.uefi.tables: ziggify boot and runtime services
* avoid T{} syntax
Co-authored-by: linusg <mail@linusgroh.de>
* misc fixes
* work
* self-review quickfixes
* dont make MemoryMapSlice generic
* more review fixes, work
* more work
* more work
* review fixes
* update boot/runtime services references throughout codebase
* self-review fixes
* couple of fixes i forgot to commit earlier
* fixes from integrating in my own project
* fixes from refAllDeclsRecursive
* Apply suggestions from code review
Co-authored-by: truemedian <truemedian@gmail.com>
* more fixes from review
* fixes from project integration
* make natural alignment of Guid align-8
* EventRegistration is a new opaque type
* fix getNextHighMonotonicCount
* fix locateProtocol
* fix exit
* partly revert 7372d65
* oops exit data_len is num of bytes
* fixes from project integration
* MapInfo consistency, MemoryType update per review
* turn EventRegistration back into a pointer
* forgot to finish updating MemoryType methods
* fix IntFittingRange calls
* set uefi.Page nat alignment
* Back out "set uefi.Page nat alignment"
This backs out commit cdd9bd6f7f5fb763f994b8fbe3e1a1c2996a2393.
* get rid of some error.NotFound-s
* fix .exit call in panic
* review comments, add format method
* fix resetSystem data alignment
* oops, didnt do a final refAllDeclsRecursive i guess
* review comments
* writergate update MemoryType.format
* fix rename
---------
Co-authored-by: linusg <mail@linusgroh.de>
Co-authored-by: truemedian <truemedian@gmail.com>
Basically everything that has a direct replacement or no uses left.
Notable omissions:
- std.ArrayHashMap: Too much fallout, needs a separate cleanup.
- std.debug.runtime_safety: Too much fallout.
- std.heap.GeneralPurposeAllocator: Lots of references to it remain, not
a simple find and replace as "debug allocator" is not equivalent to
"general purpose allocator".
- std.io.Reader: Is being reworked at the moment.
- std.unicode.utf8Decode(): No replacement, needs a new API first.
- Manifest backwards compat options: Removal would break test data used
by TestFetchBuilder.
- panic handler needs to be a namespace: Many tests still rely on it
being a function, needs a separate cleanup.
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
Macos uses the BSD definition of msghdr
All linux architectures share a single msghdr definition. Many
architectures had manually inserted padding fields that were endian
specific and some had fields with different integers. This unifies all
architectures to use a single correct msghdr definition.
musl and glibc both specify r0 as an output register because its value
may be overwritten by system calls. As with the updates for 64-bit
PowerPC in the previous commit, this commit brings Zig's syscall
functions for 32-bit PowerPC in line with musl and glibc by adding r0 to
the list of clobbers. (Listing r0 as both an input and a clobber is as
close as we can get to musl, which declares it as a "+r" read-write
output, since Zig doesn't support multiple outputs or the "+"
specifier.)
On powerpc64le Linux, the registers used for passing syscall parameters
(r4-r8, as well as r0 for the syscall number) are volatile, or
caller-saved. However, Zig's syscall wrappers for this architecture do
not include all such registers in the list of clobbers, leading the
compiler to assume these registers will maintain their values after the
syscall completes.
In practice, this resulted in a segfault when allocating memory with
`std.heap.SmpAllocator`, which calls `std.os.linux.sched_getaffinity`.
The third parameter to `sched_getaffinity` is a pointer to a `cpu_set_t`
and is stored in register r5. After the syscall, the code attempts to
access data in the `cpu_set_t`, but because the compiler doesn't realize
the value of r5 may have changed, it uses r5 as the memory address, which
in practice resulted in a memory access at address 0x8.
This commit adds all volatile registers to the list of clobbers.
* `futex2_waitv` always takes a 64-bit timespec. Perhaps the
`kernel_timespec` should be renamed `timespec64`? Its used in iouring,
too.
* Add `packed struct` for futex v2 flags and parameters.
* Add very basic "tests" for the futex v2 syscalls (just to ensure the
code compiles).
* Update the stale or broken comments. (I could also just delete these
they're not really documenting Zig-specific behavior.)
Given that the futex2 APIs are not used by Zig's library (they're a bit
too new), and the fact that these are very specialized syscalls, and they
currently provide no benefit over the existing v1 API, I wonder if instead
of fixing these up, we should just replace them with a stub that says 'use
a 3rd party library'.
* Use `packed struct` for flags arguments. So, instead of
`linux.FUTEX.WAIT` use `.{ .cmd = .WAIT, .private = true }`
* rename `futex_wait` and `futex_wake` which didn't actually specify
wait/wake, as `futex_3arg` and `futex_4arg` (as its the number
of parameters that is different, the `op` is whatever is specified.
* expose the full six-arg flavor of the syscall (for some of the advanced
ops), and add packed structs for their arguments.
* Use a `packed union` to support the 4th parameter which is sometimes a
`timespec` pointer, and sometimes a `u32`.
* Add tests that make sure the structure layout is correct and that the
basic argument passing is working (no actual futexes are contended).
Nothing interesting here; literally just the bare minimum so I can work on this
on and off in a branch without worrying about merge conflicts in the non-backend
code.
This code applies to ~any POSIX OS where we don't link libc. For example, it'll
be useful for FreeBSD and NetBSD.
As part of this, move std.os.linux.pie to std.pie since there's really nothing
Linux-specific about what that file is doing.
For C code the macros SIGRTMIN and SIGRTMAX provide these values. In
practice what looks like a constant is actually provided by a libc call.
So the Zig implementations are explicitly function calls.
glibc (and Musl) export a run-time minimum "real-time" signal number,
based on how many signals are reserved for internal implementation details
(generally threading). In practice, on Linux, sigrtmin() is 35 on glibc
with the older LinuxThread and 34 with the newer NPTL-based
implementation. Musl always returns 35. The maximum "real-time" signal
number is NSIG - 1 (64 on most Linux kernels, but 128 on MIPS).
When not linking a C Library, Zig can report the full range of "rt"
signals (none are reserved by Zig).
Fixes#21189