Commit graph

569 commits

Author SHA1 Message Date
Ali Cheraghi
246e1de554
Watch: do not fail when file is removed
before this we would get a crash
2025-08-03 13:16:49 +03:30
Ali Cheraghi
31de2c873f
spirv: refactor 2025-08-02 04:16:01 +03:30
Andrew Kelley
e9b9a27a52 codegen: prevent AnyMir from bloating zig1.wasm 2025-07-22 19:43:47 -07:00
Jacob Young
5060ab99c9 aarch64: add new from scratch self-hosted backend 2025-07-22 19:43:47 -07:00
Andrew Kelley
30c2921eb8 compiler: update a bunch of format strings 2025-07-07 22:43:52 -07:00
Andrew Kelley
a13f0d40eb compiler: delete arm backend
this backend was abandoned before it was completed, and it is not worth
salvaging.
2025-07-02 14:50:41 -07:00
Andrew Kelley
20a543097b compiler: delete aarch64 backend
this backend was abandoned before it was completed, and it is not worth
salvaging.
2025-07-02 14:42:20 -07:00
Andrew Kelley
80a9b8f326 compiler: delete powerpc backend stub
nobody is currently working on this
2025-07-02 14:35:13 -07:00
Ali Cheraghi
1df79ab895 remove spirv cpu arch 2025-06-23 06:03:03 +02:00
Jacob Young
1f98c98fff x86_64: increase passing test coverage on windows
Now that codegen has no references to linker state this is much easier.

Closes #24153
2025-06-19 18:41:12 -04:00
Jacob Young
917640810e Target: pass and use locals by pointer instead of by value
This struct is larger than 256 bytes and code that copies it
consistently shows up in profiles of the compiler.
2025-06-19 11:45:06 -04:00
Ali Cheraghi
872f68c9cb
rename spirv backend name
`stage2_spirv64` -> `stage2_spirv`
2025-06-16 13:22:19 +03:30
Jacob Young
afa07f723f
x86_64: implement coff relocations 2025-06-12 17:51:30 +01:00
Jacob Young
d312dfc1f2
codegen: make threadlocal logic consistent 2025-06-12 17:51:29 +01:00
Jacob Young
ba53b14028
x86_64: remove linker references from codegen 2025-06-12 13:55:41 +01:00
Jacob Young
c95b1bf2d3
x86_64: remove air references from mir 2025-06-12 13:55:41 +01:00
mlugg
c0df707066
wasm: get self-hosted compiling, and supporting separate_thread
My original goal here was just to get the self-hosted Wasm backend
compiling again after the pipeline change, but it turned out that from
there it was pretty simple to entirely eliminate the shared state
between `codegen.wasm` and `link.Wasm`. As such, this commit not only
fixes the backend, but makes it the second backend (after CBE) to
support the new 1:N:1 threading model.
2025-06-12 13:55:40 +01:00
mlugg
5ab307cf47
compiler: get most backends compiling again
As of this commit, every backend other than self-hosted Wasm and
self-hosted SPIR-V compiles and (at least somewhat) functions again.
Those two backends are currently disabled with panics.

Note that `Zcu.Feature.separate_thread` is *not* enabled for the fixed
backends. Avoiding linker references from codegen is a non-trivial task,
and can be done after this branch.
2025-06-12 13:55:40 +01:00
mlugg
9eb400ef19
compiler: rework backend pipeline to separate codegen and link
The idea here is that instead of the linker calling into codegen,
instead codegen should run before we touch the linker, and after MIR is
produced, it is sent to the linker. Aside from simplifying the call
graph (by preventing N linkers from each calling into M codegen
backends!), this has the huge benefit that it is possible to
parallellize codegen separately from linking. The threading model can
look like this:

* 1 semantic analysis thread, which generates AIR
* N codegen threads, which process AIR into MIR
* 1 linker thread, which emits MIR to the binary

The codegen threads are also responsible for `Air.Legalize` and
`Air.Liveness`; it's more efficient to do this work here instead of
blocking the main thread for this trivially parallel task.

I have repurposed the `Zcu.Feature.separate_thread` backend feature to
indicate support for this 1:N:1 threading pattern. This commit makes the
C backend support this feature, since it was relatively easy to divorce
from `link.C`: it just required eliminating some shared buffers. Other
backends don't currently support this feature. In fact, they don't even
compile -- the next few commits will fix them back up.
2025-06-12 13:55:40 +01:00
Jacob Young
0bf8617d96 x86_64: add support for pie executables 2025-06-06 23:42:14 -07:00
Jacob Young
77e6513030 cbe: implement stdbool.h reserved identifiers
Also remove the legalize pass from zig1.
2025-05-31 18:54:28 -04:00
Jacob Young
6198f7afb7 Sema: remove all_vector_instructions logic
Backends can instead ask legalization on a per-instruction basis.
2025-05-31 18:54:28 -04:00
mlugg
b4a0a082dc codegen: fix accidental stack UAF 2025-05-31 18:54:28 -04:00
Jacob Young
b483defc5a Legalize: implement scalarization of binary operations 2025-05-31 18:54:28 -04:00
Jacob Young
c04be630d9 Legalize: introduce a new pass before liveness
Each target can opt into different sets of legalize features.
By performing these transformations before liveness, instructions
that become unreferenced will have up-to-date liveness information.
2025-05-29 03:57:48 -04:00
mlugg
92c63126e8 compiler: tlv pointers are not comptime-known
Pointers to thread-local variables do not have their addresses known
until runtime, so it is nonsensical for them to be comptime-known. There
was logic in the compiler which was essentially attempting to treat them
as not being comptime-known despite the pointer being an interned value.
This was a bit of a mess, the check was frequent enough to actually show
up in compiler profiles, and it was very awkward for backends to deal
with, because they had to grapple with the fact that a "constant" they
were lowering might actually require runtime operations.

So, instead, do not consider these pointers to be comptime-known in
*any* way. Never intern such a pointer; instead, when the address of a
threadlocal is taken, emit an AIR instruction which computes the pointer
at runtime. This avoids lots of special handling for TLVs across
basically all codegen backends; of all somewhat-functional backends, the
only one which wasn't improved by this change was the LLVM backend,
because LLVM pretends this complexity around threadlocals doesn't exist.

This change simplifies Sema and codegen, avoids a potential source of
bugs, and potentially improves Sema performance very slightly by
avoiding a non-trivial check on a hot path.
2025-05-27 19:23:11 +01:00
Alex Rønne Petersen
999777e73a compiler: Scaffold stage2_powerpc backend.
Nothing interesting here; literally just the bare minimum so I can work on this
on and off in a branch without worrying about merge conflicts in the non-backend
code.
2025-05-20 10:23:16 +02:00
mlugg
37a9a4e0f1
compiler: refactor Zcu.File and path representation
This commit makes some big changes to how we track state for Zig source
files. In particular, it changes:

* How `File` tracks its path on-disk
* How AstGen discovers files
* How file-level errors are tracked
* How `builtin.zig` files and modules are created

The original motivation here was to address incremental compilation bugs
with the handling of files, such as #22696. To fix this, a few changes
are necessary.

Just like declarations may become unreferenced on an incremental update,
meaning we suppress analysis errors associated with them, it is also
possible for all imports of a file to be removed on an incremental
update, in which case file-level errors for that file should be
suppressed. As such, after AstGen, the compiler must traverse files
(starting from analysis roots) and discover the set of "live files" for
this update.

Additionally, the compiler's previous handling of retryable file errors
was not very good; the source location the error was reported as was
based only on the first discovered import of that file. This source
location also disappeared on future incremental updates. So, as a part
of the file traversal above, we also need to figure out the source
locations of imports which errors should be reported against.

Another observation I made is that the "file exists in multiple modules"
error was not implemented in a particularly good way (I get to say that
because I wrote it!). It was subject to races, where the order in which
different imports of a file were discovered affects both how errors are
printed, and which module the file is arbitrarily assigned, with the
latter in turn affecting which other files are considered for import.
The thing I realised here is that while the AstGen worker pool is
running, we cannot know for sure which module(s) a file is in; we could
always discover an import later which changes the answer.

So, here's how the AstGen workers have changed. We initially ensure that
`zcu.import_table` contains the root files for all modules in this Zcu,
even if we don't know any imports for them yet. Then, the AstGen
workers do not need to be aware of modules. Instead, they simply ignore
module imports, and only spin off more workers when they see a by-path
import.

During AstGen, we can't use module-root-relative paths, since we don't
know which modules files are in; but we don't want to unnecessarily use
absolute files either, because those are non-portable and can make
`error.NameTooLong` more likely. As such, I have introduced a new
abstraction, `Compilation.Path`. This type is a way of representing a
filesystem path which has a *canonical form*. The path is represented
relative to one of a few special directories: the lib directory, the
global cache directory, or the local cache directory. As a fallback, we
use absolute (or cwd-relative on WASI) paths. This is kind of similar to
`std.Build.Cache.Path` with a pre-defined list of possible
`std.Build.Cache.Directory`, but has stricter canonicalization rules
based on path resolution to make sure deduplicating files works
properly. A `Compilation.Path` can be trivially converted to a
`std.Build.Cache.Path` from a `Compilation`, but is smaller, has a
canonical form, and has a digest which will be consistent across
different compiler processes with the same lib and cache directories
(important when we serialize incremental compilation state in the
future). `Zcu.File` and `Zcu.EmbedFile` both contain a
`Compilation.Path`, which is used to access the file on-disk;
module-relative sub paths are used quite rarely (`EmbedFile` doesn't
even have one now for simplicity).

After the AstGen workers all complete, we know that any file which might
be imported is definitely in `import_table` and up-to-date. So, we
perform a single-threaded graph traversal; similar to what
`resolveReferences` plays for `AnalUnit`s, but for files instead. We
figure out which files are alive, and which module each file is in. If a
file turns out to be in multiple modules, we set a field on `Zcu` to
indicate this error. If a file is in a different module to a prior
update, we set a flag instructing `updateZirRefs` to invalidate all
dependencies on the file. This traversal also discovers "import errors";
these are errors associated with a specific `@import`. With Zig's
current design, there is only one possible error here: "import outside
of module root". This must be identified during this traversal instead
of during AstGen, because it depends on which module the file is in. I
tried also representing "module not found" errors in this same way, but
it turns out to be much more useful to report those in Sema, because of
use cases like optional dependencies where a module import is behind a
comptime-known build option.

For simplicity, `failed_files` now just maps to `?[]u8`, since the
source location is always the whole file. In fact, this allows removing
`LazySrcLoc.Offset.entire_file` completely, slightly simplifying some
error reporting logic. File-level errors are now directly built in the
`std.zig.ErrorBundle.Wip`. If the payload is not `null`, it is the
message for a retryable error (i.e. an error loading the source file),
and will be reported with a "file imported here" note pointing to the
import site discovered during the single-threaded file traversal.

The last piece of fallout here is how `Builtin` works. Rather than
constructing "builtin" modules when creating `Package.Module`s, they are
now constructed on-the-fly by `Zcu`. The map `Zcu.builtin_modules` maps
from digests to `*Package.Module`s. These digests are abstract hashes of
the `Builtin` value; i.e. all of the options which are placed into
"builtin.zig". During the file traversal, we populate `builtin_modules`
as needed, so that when we see this imports in Sema, we just grab the
relevant entry from this map. This eliminates a bunch of awkward state
tracking during construction of the module graph. It's also now clearer
exactly what options the builtin module has, since previously it
inherited some options arbitrarily from the first-created module with
that "builtin" module!

The user-visible effects of this commit are:
* retryable file errors are now consistently reported against the whole
  file, with a note pointing to a live import of that file
* some theoretical bugs where imports are wrongly considered distinct
  (when the import path moves out of the cwd and then back in) are fixed
* some consistency issues with how file-level errors are reported are
  fixed; these errors will now always be printed in the same order
  regardless of how the AstGen pass assigns file indices
* incremental updates do not print retryable file errors differently
  between updates or depending on file structure/contents
* incremental updates support files changing modules
* incremental updates support files becoming unreferenced

Resolves: #22696
2025-05-18 17:37:02 +01:00
Alex Rønne Petersen
837e0f9c37 std.Target: Remove ObjectFormat.nvptx (and associated linker code).
Textual PTX is just assembly language like any other. And if we do ever add
support for emitting PTX object files after reverse engineering the bytecode
format, we'd be emitting ELF files like the CUDA toolchain. So there's really no
need for a special ObjectFormat tag here, nor linker code that treats it as a
distinct format.
2025-05-10 12:21:57 +02:00
Jacob Young
6705cbd5eb codegen: fix packed byte-aligned relocations
Closes #23131
2025-03-23 18:35:34 -04:00
Andrew Kelley
eb3c7f5706 zig build fmt 2025-02-22 17:09:20 -08:00
Jacob Young
8159ff8b81 x86_64: implement error set and enum safety
This is all of the expected 0.14.0 progress on #21530, which can now be
postponed once this commit is merged.

This required rewriting the (un)wrap operations since the original
implementations were extremely buggy.

Also adds an easy way to retrigger Sema OPV bugs so that I don't have to
keep updating #22419 all the time.
2025-02-15 03:45:21 -05:00
mlugg
0ec6b2dd88 compiler: simplify generic functions, fix issues with inline calls
The original motivation here was to fix regressions caused by #22414.
However, while working on this, I ended up discussing a language
simplification with Andrew, which changes things a little from how they
worked before #22414.

The main user-facing change here is that any reference to a prior
function parameter, even if potentially comptime-known at the usage
site or even not analyzed, now makes a function generic. This applies
even if the parameter being referenced is not a `comptime` parameter,
since it could still be populated when performing an inline call. This
is a breaking language change.

The detection of this is done in AstGen; when evaluating a parameter
type or return type, we track whether it referenced any prior parameter,
and if so, we mark this type as being "generic" in ZIR. This will cause
Sema to not evaluate it until the time of instantiation or inline call.

A lovely consequence of this from an implementation perspective is that
it eliminates the need for most of the "generic poison" system. In
particular, `error.GenericPoison` is now completely unnecessary, because
we identify generic expressions earlier in the pipeline; this simplifies
the compiler and avoids redundant work. This also entirely eliminates
the concept of the "generic poison value". The only remnant of this
system is the "generic poison type" (`Type.generic_poison` and
`InternPool.Index.generic_poison_type`). This type is used in two
places:

* During semantic analysis, to represent an unknown result type.
* When storing generic function types, to represent a generic parameter/return type.

It's possible that these use cases should instead use `.none`, but I
leave that investigation to a future adventurer.

One last thing. Prior to #22414, inline calls were a little inefficient,
because they re-evaluated even non-generic parameter types whenever they
were called. Changing this behavior is what ultimately led to #22538.
Well, because the new logic will mark a type expression as generic if
there is any change its resolved type could differ in an inline call,
this redundant work is unnecessary! So, this is another way in which the
new design reduces redundant work and complexity.

Resolves: #22494
Resolves: #22532
Resolves: #22538
2025-01-21 02:41:42 +00:00
mlugg
d00e05f186
all: update to std.builtin.Type.Pointer.Size field renames
This was done by regex substitution with `sed`. I then manually went
over the entire diff and fixed any incorrect changes.

This diff also changes a lot of `callconv(.C)` to `callconv(.c)`, since
my regex happened to also trigger here. I opted to leave these changes
in, since they *are* a correct migration, even if they're not the one I
was trying to do!
2025-01-16 12:46:29 +00:00
Andrew Kelley
4cc9cfa7e8 wasm linker: track overaligned uavs 2025-01-15 15:11:36 -08:00
Andrew Kelley
cde84c8795 wasm linker: fix missed addend for uav and nav fixups 2025-01-15 15:11:36 -08:00
Andrew Kelley
e5d78f0b55 codegen: empty tuple can be stored in a runtime var 2025-01-15 15:11:36 -08:00
Andrew Kelley
a327d238f1 wasm linker: handle function data references properly 2025-01-15 15:11:36 -08:00
Andrew Kelley
94648a0383 fix merge conflicts with updating line numbers 2025-01-15 15:11:36 -08:00
Andrew Kelley
7d224516c4 wasm linker: chase relocations for references 2025-01-15 15:11:36 -08:00
Andrew Kelley
389b29fd8c wasm linker: avoid recursion in lowerZcuData
instead of recursion, callers of the function are responsible for
checking the respective tables that might have new entries in them and
then calling lowerZcuData again.
2025-01-15 15:11:36 -08:00
Andrew Kelley
4f8a6b0888 wasm linker: implement data fixups
one hash table lookup per fixup
2025-01-15 15:11:36 -08:00
Andrew Kelley
458f658b42 wasm linker: implement missing logic
fix some compilation errors for reworked Emit now that it's actually
referenced

introduce DataSegment.Id for sorting data both from object files and
from the Zcu.

introduce optimization: data segment sorting includes a descending sort
on reference count so that references to data can be smaller integers
leading to better LEB encodings. this optimization is skipped for object
files.

implement uav address access function which is based on only 1 hash
table lookup to find out the offset after sorting.
2025-01-15 15:11:35 -08:00
Andrew Kelley
031c84c8cb wasm: fix many compilation errors
Still, the branch is not yet passing semantic analysis.
2025-01-15 15:11:35 -08:00
Andrew Kelley
b3ecdb21ee switch to ArrayListUnmanaged for machine code 2025-01-15 15:11:35 -08:00
Andrew Kelley
9bf715de74 rework error handling in the backends 2025-01-15 15:11:35 -08:00
Andrew Kelley
795e7c64d5 wasm linker: aggressive DODification
The goals of this branch are to:
* compile faster when using the wasm linker and backend
* enable saving compiler state by directly copying in-memory linker
  state to disk.
* more efficient compiler memory utilization
* introduce integer type safety to wasm linker code
* generate better WebAssembly code
* fully participate in incremental compilation
* do as much work as possible outside of flush(), while continuing to do
  linker garbage collection.
* avoid unnecessary heap allocations
* avoid unnecessary indirect function calls

In order to accomplish this goals, this removes the ZigObject
abstraction, as well as Symbol and Atom. These abstractions resulted
in overly generic code, doing unnecessary work, and needless
complications that simply go away by creating a better in-memory data
model and emitting more things lazily.

For example, this makes wasm codegen emit MIR which is then lowered to
wasm code during linking, with optimal function indexes etc, or
relocations are emitted if outputting an object. Previously, this would
always emit relocations, which are fully unnecessary when emitting an
executable, and required all function calls to use the maximum size LEB
encoding.

This branch introduces the concept of the "prelink" phase which occurs
after all object files have been parsed, but before any Zcu updates are
sent to the linker. This allows the linker to fully parse all objects
into a compact memory model, which is guaranteed to be complete when Zcu
code is generated.

This commit is not a complete implementation of all these goals; it is
not even passing semantic analysis.
2025-01-15 15:11:35 -08:00
Jacob Young
0bf44c3093 x86_64: fix @errorName data
The final offset was clobbering the first error name, which is revealed
by an out of bounds when the global error set is empty.

Closes #22362
2025-01-05 17:15:56 -05:00
mlugg
3afda4322c
compiler: analyze type and value of global declaration separately
This commit separates semantic analysis of the annotated type vs value
of a global declaration, therefore allowing recursive and mutually
recursive values to be declared.

Every `Nav` which undergoes analysis now has *two* corresponding
`AnalUnit`s: `.{ .nav_val = n }` and `.{ .nav_ty = n }`. The `nav_val`
unit is responsible for *fully resolving* the `Nav`: determining its
value, linksection, addrspace, etc. The `nav_ty` unit, on the other
hand, resolves only the information necessary to construct a *pointer*
to the `Nav`: its type, addrspace, etc. (It does also analyze its
linksection, but that could be moved to `nav_val` I think; it doesn't
make any difference).

Analyzing a `nav_ty` for a declaration with no type annotation will just
mark a dependency on the `nav_val`, analyze it, and finish. Conversely,
analyzing a `nav_val` for a declaration *with* a type annotation will
first mark a dependency on the `nav_ty` and analyze it, using this as
the result type when evaluating the value body.

The `nav_val` and `nav_ty` units always have references to one another:
so, if a `Nav`'s type is referenced, its value implicitly is too, and
vice versa. However, these dependencies are trivial, so, to save memory,
are only known implicitly by logic in `resolveReferences`.

In general, analyzing ZIR `decl_val` will only analyze `nav_ty` of the
corresponding `Nav`. There are two exceptions to this. If the
declaration is an `extern` declaration, then we immediately ensure the
`Nav` value is resolved (which doesn't actually require any more
analysis, since such a declaration has no value body anyway).
Additionally, if the resolved type has type tag `.@"fn"`, we again
immediately resolve the `Nav` value. The latter restriction is in place
for two reasons:

* Functions are special, in that their externs are allowed to trivially
  alias; i.e. with a declaration `extern fn foo(...)`, you can write
  `const bar = foo;`. This is not allowed for non-function externs, and
  it means that function types are the only place where it is possible
  for a declaration `Nav` to have a `.@"extern"` value without actually
  being declared `extern`. We need to identify this situation
  immediately so that the `decl_ref` can create a pointer to the *real*
  extern `Nav`, not this alias.
* In certain situations, such as taking a pointer to a `Nav`, Sema needs
  to queue analysis of a runtime function if the value is a function. To
  do this, the function value needs to be known, so we need to resolve
  the value immediately upon `&foo` where `foo` is a function.

This restriction is simple to codify into the eventual language
specification, and doesn't limit the utility of this feature in
practice.

A consequence of this commit is that codegen and linking logic needs to
be more careful when looking at `Nav`s. In general:

* When `updateNav` or `updateFunc` is called, it is safe to assume that
  the `Nav` being updated (the owner `Nav` for `updateFunc`) is fully
  resolved.
* Any `Nav` whose value is/will be an `@"extern"` or a function is fully
  resolved; see `Nav.getExtern` for a helper for a common case here.
* Any other `Nav` may only have its type resolved.

This didn't seem to be too tricky to satisfy in any of the existing
codegen/linker backends.

Resolves: #131
2024-12-24 02:18:41 +00:00
mlugg
18362ebe13
Zir: refactor declaration instruction representation
The new representation is often more compact. It is also more
straightforward to understand: for instance, `extern` is represented on
the `declaration` instruction itself rather than using a special
instruction. The same applies to `var`, making both of these far more
compact.

This commit also separates the type and value bodies of a `declaration`
instruction. This is a prerequisite for #131.

In general, `declaration` now directly encodes details of the syntax
form used, and the embedded ZIR bodies are for actual expressions. The
only exception to this is functions, where ZIR is effectively designed
as if we had #1717. `extern fn` declarations are modeled as
`extern const` with a function type, and normal `fn` definitions are
modeled as `const` with a `func{,_fancy,_inferred}` instruction. This
may change in the future, but improving on this was out of scope for
this commit.
2024-12-23 21:09:17 +00:00