Unfortunately this can't be implemented "above the vtable" because
various operating systems don't provide low level DNS resolution
primitives such as just putting the list of nameservers in a file.
Without libc on Linux it works great though!
Anyway this also changes the API to be based on Io.Queue. By using a
large enough buffer, reusable code can be written that does not require
concurrent, yet takes advantage of responding to DNS queries as they
come in. I sketched out a new implementation of `HostName.connect` to
demonstrate this, but it will require an additional API (`Io.Select`) to
be implemented in a future commit.
This commit also introduces "uncancelable" variants for mutex locking,
waiting on a condition, and putting items into a queue.
There is no straightforward way for the Zig team to access the Solaris system
headers; to do this, one has to create an Oracle account, accept their EULA to
download the installer ISO, and finally install it on a machine or VM. We do not
have to jump through hoops like this for any other OS that we support, and no
one on the team has expressed willingness to do it.
As a result, we cannot audit any Solaris contributions to std.c or other
similarly sensitive parts of the standard library. The best we would be able to
do is assume that Solaris and illumos are 100% compatible with no way to verify
that assumption. But at that point, the solaris and illumos OS tags would be
functionally identical anyway.
For Solaris especially, any contributions that involve APIs introduced after the
OS was made closed-source would also be inherently more risky than equivalent
contributions for other proprietary OSs due to the case of Google LLC v. Oracle
America, Inc., wherein Oracle clearly demonstrated its willingness to pursue
legal action against entities that merely copy API declarations.
Finally, Oracle laid off most of the Solaris team in 2017; the OS has been in
maintenance mode since, presumably to be retired completely sometime in the 2030s.
For these reasons, this commit removes all Oracle Solaris support.
Anyone who still wishes to use Zig on Solaris can try their luck by simply using
illumos instead of solaris in target triples - chances are it'll work. But there
will be no effort from the Zig team to support this use case; we recommend that
people move to illumos instead.
The compile-time check against the minimum version here wasn't appropriate, since it still makes sense to try using FILE_RENAME_INFORMATION_EX even if the minimum version is something like `xp`, since that doesn't rule out the possibility of the compiled code running on Windows 10/11. This compile-time check was doubly bad since the default minimum windows version (`.win10`) was below the `.win10_rs5` that was checked for, so when providing a target like `x86_64-windows-gnu` it'd always rule out using this syscall.
After this commit, we always try using FILE_RENAME_INFORMATION_EX and then let the operating system tell us when some aspect of it is not supported. This allows us to get the benefits of these new syscalls/flags whenever it's actually possible.
The possible error returns were validated experimentally:
- INVALID_PARAMETER is returned when the underlying filesystem is FAT32
- INVALID_INFO_CLASS is returned on Windows 7 when trying to use FileRenameInformationEx/FileDispositionInformationEx
- NOT_SUPPORTED is returned on Windows 10 >= .win10_rs5 when setting a bogus flag value (I used `0x1000`)
This is to help diagnose #25498. We can't use `unexpectedErrno` here,
because `std.posix.munmap` is infallible. So, when the flag is set to
report unexpected errnos, we just call `std.debug.panic` to provide
details instead of doing `unreachable`.
Pushing straight to master after running checks locally; there's no
point waiting for CI on the PR just for this.
This type is useful for two things:
* Doing non-local control flow with ucontext.h functions.
* Inspecting machine state in a signal handler.
The first use case is not one we support; we no longer expose bindings to those
functions in the standard library. They're also deprecated in POSIX and, as a
result, not available in musl.
The second use case is valid, but is very poorly served by the standard library.
As evidenced by my changes to std.debug.cpu_context.signal_context_t, users will
be better served rolling their own ucontext_t and especially mcontext_t types
which fit their specific situation. Further, these types tend to evolve
frequently as architectures evolve, and the standard library has not done a good
job keeping up, or even providing them for all supported targets.
Processes should reasonably be able to expect their children to abort
with typical exit codes, rather than a debugger breakpoint signal. This
flag in the PEB is what would be checked by `IsDebuggerPresent` in
kernel32, which is the function you would typically use for this
purpose.
This fixes `test-stack-trace` failures on Windows, as these tests were
expecting exit code 3 to indicate abort.
Our usage of `ucontext_t` in the standard library was kind of
problematic. We unnecessarily mimiced libc-specific structures, and our
`getcontext` implementation was overkill for our use case of stack
tracing.
This commit introduces a new namespace, `std.debug.cpu_context`, which
contains "context" types for various architectures (currently x86,
x86_64, ARM, and AARCH64) containing the general-purpose CPU registers;
the ones needed in practice for stack unwinding. Each implementation has
a function `current` which populates the structure using inline
assembly. The structure is user-overrideable, though that should only be
necessary if the standard library does not have an implementation for
the *architecture*: that is to say, none of this is OS-dependent.
Of course, in POSIX signal handlers, we get a `ucontext_t` from the
kernel. The function `std.debug.cpu_context.fromPosixSignalContext`
converts this to a `std.debug.cpu_context.Native` with a big ol' target
switch.
This functionality is not exposed from `std.c` or `std.posix`, and
neither are `ucontext_t`, `mcontext_t`, or `getcontext`. The rationale
is that these types and functions do not conform to a specific ABI, and
in fact tend to get updated over time based on CPU features and
extensions; in addition, different libcs use different structures which
are "partially compatible" with the kernel structure. Overall, it's a
mess, but all we need is the kernel context, so we can just define a
kernel-compatible structure as long as we don't claim C compatibility by
putting it in `std.c` or `std.posix`.
This change resulted in a few nice `std.debug` simplifications, but
nothing too noteworthy. However, the main benefit of this change is that
DWARF unwinding---sometimes necessary for collecting stack traces
reliably---now requires far less target-specific integration.
Also fix a bug I noticed in `PageAllocator` (I found this due to a bug
in my distro's QEMU distribution; thanks, broken QEMU patch!) and I
think a couple of minor bugs in `std.debug`.
Resolves: #23801Resolves: #23802
When not linking libc on 64-bit Linux and calling posix.setsid(),
we get a type error at compile time inside of posix.errno(). This
is because posix.errno()'s non-libc branch expects a usize-sized
value, which is what all the error-returning os.linux syscalls
return, and linux.setsid() instead returned a pid_t, which is only
32 bits wide.
This and the other 3 pid-related calls just below it (getpid(),
getppid(), and gettid()) are the only Linux syscall examples here
that are casting their return values to pid_t. For the other 3
this makes sense: those calls are documented to have no possible
errors and always return a valid pid_t value.
However, setsid() actually can return the error EPERM, and
therefore needs to return the raw value from syscall0 for
posix.errno() to process like normal.
Additionally, posix.setsid() needs an @intCast(rc) for the success
case as a result, like most other such cases.
Because these lists are very long in several cases and quite
varied, I opted to place them in the existing c/foo.zig files.
There are many other sets of network-related constants like this
to add over time across all the OSes. For now I picked these
because I needed a few constants from each of these namespaces for
my own project, so I tried to flesh out these namespaces
completely as best I could, at least for basic sockopt purposes.
Note windows has some of these already defined in ws2_32 as
individual constants rather than contained in a namespacing
struct. I'm not sure what to do with that in the long run (break
it and namespace them?), but this doesn't change the status quo
for windows in any case.
in_pktinfo is only used on a few targets for the IP_PKTINFO
sockopt, as many BSDs use an alternate mechanism (IP_RECVDSTADDR)
that doesn't require a special struct. in6_pktinfo is more
universal.
Also, added EPIPE to recvfrom() error set (it's a documented error
for unix and tcp sockets, at least), which recvmsg() largely
shares. Windows has an odd, callback-based form of recvmsg() that
doesn't fit the normal interface here.
socketpair is something like a pipe2() for sockets, and generally
only works for AF_UNIX sockets for most platforms. Winsock2
explicitly does not support this call, even though it does have
AF_UNIX sockets.