added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
* Accept -fsanitize-c=trap|full in addition to the existing form.
* Accept -f(no-)sanitize-trap=undefined in zig cc.
* Change type of std.Build.Module.sanitize_c to std.zig.SanitizeC.
* Add some missing Compilation.Config fields to the cache.
Closes#23216.
Currently zig fails to build while linking the system LLVM/C++ libraries
on my Chimera Linux system due to the fact that libc++.so is a linker
script with the following contents:
INPUT(libc++.so.1 -lc++abi -lunwind)
Prior to this commit, zig would try to convert "ambiguous names" in
linker scripts such as libc++.so.1 in this example into -lfoo style
flags. This fails in this case due to the so version number as zig
checks for exactly the .so suffix.
Furthermore, I do not think that this conversion is semantically correct
since converting libfoo.so to -lfoo could theoretically end up resulting
in libfoo.a getting linked which seems wrong when a different file is
specified in the linker script.
With this patch, this attempted conversion is removed. Instead, zig
always first checks if the exact file/path in the linker script exists
relative to the current working directory.
If the file is classified as a library (including versioned shared
objects such as libfoo.so.1), zig then falls back to checking if
the exact file/path in the linker script exists relative to each
directory in the library search path, selecting the first match or
erroring out if none is found.
This behavior fixes the regression that prevents building zig while
linking the system LLVM/C++ libraries on Chimera Linux.
crti.o/crtn.o is a legacy strategy for calling constructor functions
upon object loading that has been superseded by the
init_array/fini_array mechanism.
Zig code depends on neither, since the language intentionally has no way
to initialize data at runtime, but alas the Zig linker still must
support this feature since popular languages depend on it.
Anyway, the way it works is that crti.o has the machine code prelude of
two functions called _init and _fini, each in their own section with the
respective name. crtn.o has the machine code instructions comprising the
exitlude for each function. In between, objects use the .init and .fini
link section to populate the function body.
This function is then expected to be called upon object initialization
and deinitialization.
This mechanism is depended on by libc, for example musl and glibc, but
only for older ISAs. By the time the libcs gained support for newer
ISAs, they had moved on to the init_array/fini_array mechanism instead.
For the Zig linker, we are trying to move the linker towards
order-independent objects which is incompatible with the legacy
crti/crtn mechanism.
Therefore, this commit drops support entirely for crti/crtn mechanism,
which is necessary since the other commits in this branch make it
nondeterministic in which order the libc objects and the other link
inputs are sent to the linker.
The linker is still expected to produce a deterministic output, however,
by ignoring object input order for the purposes of symbol resolution.
According to a comment in mold, this is the expected (and desired)
condition by the linkers, except for some architectures (RISCV and
Loongarch) where this condition does not have to upheld.
If you follow the changes in this patch and in particular doc comments
I have linked the comment/code in mold that explains and implements
this.
I have also modified `testEhFrameRelocatable` test to now test both
cases such that `zig ld -r a.o b.o -o c.o` and `zig ld -r b.o a.o -o
d.o`. In both cases, `c.o` and `d.o` should produce valid object
files which was not the case before this patch.
The compiler defaults this value to off so that users whose system
shared libraries are all ELF files don't have to pay the cost of
checking every file to find out if it is a text file instead.
When a GNU ld script is encountered, the error message instructs users
about the CLI flag that will immediately solve their problem.
along with the relevant logic, making the libraries within subject to
the same search criteria as all the other libraries.
this unfortunately means doing file system access on all .so files when
targeting ELF to determine if they are linker scripts, however, I have a
plan to address this.
flush() must not do anything more than necessary. Determining the type
of input files must be done only once, before flush. Fortunately, we
don't even need any file system accesses to do this since that
information is statically known in most cases, and in the rest of the
cases can be determined by file extension alone.
This commit also updates the nearby code to conform to the convention
for error handling where there is exactly one error code to represent
the fact that error messages have already been emitted. This had the
side effect of improving the error message for a linker script parse
error.
"positionals" is not a linker concept; it is a command line interface
concept. Zig's linker implementation should not mention "positionals".
This commit deletes that array list in favor of directly making function
calls, eliminating that heap allocation during flush().
These are fundamentally incapable of producing accurate information for reasons
I've laid out in #20771. Since our only use of these functions is to check that
object files have the correct machine type, and since #21020 made
`std.Target.to{Coff,Elf}Machine()` more accurate, just switch these checks over
to that and compare the machine type tags instead.
Closes#20771.
Andrew and I have discovered that on Linux max peak rss value
is taken to be `max(build_runner, test_suite)` and since the thunks
test emit a huge binary, we will easily exceed the declared maximum
for any of the test suites. This can be worked around for now by not
checking for $thunk symbols in this test since it doesn't really
yield any additional information; however ideally we would implement
per-thread local temp arena that can be freed.
This change is seemingly insignificant but I actually agonized over this
for three days. Some other things I considered:
* (status quo in master branch) make Compile step creation functions
accept a Target.Query and delete the ResolvedTarget struct.
- downside: redundantly resolve target queries many times
* same as before but additionally add a hash map to cache target query
resolutions.
- downside: now there is a hash map that doesn't actually need to
exist, just to make the API more ergonomic.
* add is_native_os and is_native_abi fields to std.Target and use it
directly as the result of resolving a target query.
- downside: they really don't belong there. They would be available
as comptime booleans via `@import("builtin")` but they should not
be exposed that way.
With this change the downsides are:
* the option name of addExecutable and friends is `target` instead of
`resolved_target` matching the type name.
- upside: this does not break compatibility with existing build
scripts
* you likely end up seeing `target.result.cpu.arch` rather than
`target.cpu.arch`.
- upside: this is an improvement over `target.target.cpu.arch` which
it was before this commit.
- downside: `b.host.target` is now `b.host.result`.