When the previous fiber did not request to be registered as an awaiter,
it may not have actually been a full blown `Fiber`, so only create the
`Fiber` pointer when needed.
Implements deflate compression from scratch. A history window is kept in
the writer's buffer for matching and a chained hash table is used to
find matches. Tokens are accumulated until a threshold is reached and
then outputted as a block. Flush is used to indicate end of stream.
Additionally, two other deflate writers are provided:
* `Raw` writes only in store blocks (the uncompressed bytes). It
utilizes data vectors to efficiently send block headers and data.
* `Huffman` only performs Huffman compression on data and no matching.
The above are also able to take advantage of writer semantics since they
do not need to keep a history.
Literal and distance code parameters in `token` have also been reworked.
Their parameters are now derived mathematically, however the more
expensive ones are still obtained through a lookup table (expect on
ReleaseSmall).
Decompression bit reading has been greatly simplified, taking advantage
of the ability to peek on the underlying reader. Additionally, a few
bugs with limit handling have been fixed.
There were only a few dozen lines of common logic, and they frankly
introduced more complexity than they eliminated. Instead, let's accept
that the implementations of `SelfInfo` are all pretty different and want
to track different state. This probably fixes some synchronization and
memory bugs by simplifying a bunch of stuff. It also improves the DWARF
unwind cache, making it around twice as fast in a debug build with the
self-hosted x86_64 backend, because we no longer have to redundantly go
through the hashmap lookup logic to find the module. Unwinding on
Windows will also see a slight performance boost from this change,
because `RtlVirtualUnwind` does not need to know the module whatsoever,
so the old `SelfInfo` implementation was doing redundant work. Lastly,
this makes it even easier to implement `SelfInfo` on freestanding
targets; there is no longer a need to emulate a real module system,
since the user controls the whole implementation!
There are various other small refactors here in the `SelfInfo`
implementations as well as in the DWARF unwinding logic. This change
turned out to make a lot of stuff simpler!
Apparently the `__eh_frame` in Mach-O binaries doesn't include the
terminator entry, but in all other respects it acts like `.eh_frame`
rather than `.debug_frame`. I have no idea.
By my estimation, these changes speed up DWARF unwinding when using the
self-hosted x86_64 backend by around 7x. There are two very significant
enhancements: we no longer iterate frames which don't fit in the stack
trace buffer, and we cache register rules (in a fixed buffer) to avoid
re-parsing and evaluating CFI instructions in most cases. Alongside this
are a bunch of smaller enhancements, such as pre-caching the result of
evaluating the CIE's initial instructions, avoiding re-parsing of CIEs,
and big simplifications to the `Dwarf.Unwind.VirtualMachine` logic.
This logic was causing some occasional infinite looping on ARM, where
the `.debug_frame` section is often incomplete since the `.exidx`
section is used for unwind information. But the information we're
getting from the compiler is totally *valid*: it's leaving the rule as
the default, which is (as with most architectures) equivalent to
`.undefined`!
This has been a TODO for ages, but in the past it didn't really matter
because stack traces are typically printed to stderr for which a mutex
is held so in practice there was a mutex guarding usage of `SelfInfo`.
However, now that `SelfInfo` is also used for simply capturing traces,
thread safety is needed. Instead of just a single mutex, though, there
are a couple of different mutexes involved; this helps make critical
sections smaller, particularly when unwinding the stack as `unwindFrame`
doesn't typically need to hold any lock at all.
Calling `current` here causes compilation failures as the C backend
currently does not emit valid MSVC inline assembly. This change means
that when building for MSVC with the self-hosted C backend, only FP
unwinding can be used.
Processes should reasonably be able to expect their children to abort
with typical exit codes, rather than a debugger breakpoint signal. This
flag in the PEB is what would be checked by `IsDebuggerPresent` in
kernel32, which is the function you would typically use for this
purpose.
This fixes `test-stack-trace` failures on Windows, as these tests were
expecting exit code 3 to indicate abort.