This commit makes some big changes to how we track state for Zig source
files. In particular, it changes:
* How `File` tracks its path on-disk
* How AstGen discovers files
* How file-level errors are tracked
* How `builtin.zig` files and modules are created
The original motivation here was to address incremental compilation bugs
with the handling of files, such as #22696. To fix this, a few changes
are necessary.
Just like declarations may become unreferenced on an incremental update,
meaning we suppress analysis errors associated with them, it is also
possible for all imports of a file to be removed on an incremental
update, in which case file-level errors for that file should be
suppressed. As such, after AstGen, the compiler must traverse files
(starting from analysis roots) and discover the set of "live files" for
this update.
Additionally, the compiler's previous handling of retryable file errors
was not very good; the source location the error was reported as was
based only on the first discovered import of that file. This source
location also disappeared on future incremental updates. So, as a part
of the file traversal above, we also need to figure out the source
locations of imports which errors should be reported against.
Another observation I made is that the "file exists in multiple modules"
error was not implemented in a particularly good way (I get to say that
because I wrote it!). It was subject to races, where the order in which
different imports of a file were discovered affects both how errors are
printed, and which module the file is arbitrarily assigned, with the
latter in turn affecting which other files are considered for import.
The thing I realised here is that while the AstGen worker pool is
running, we cannot know for sure which module(s) a file is in; we could
always discover an import later which changes the answer.
So, here's how the AstGen workers have changed. We initially ensure that
`zcu.import_table` contains the root files for all modules in this Zcu,
even if we don't know any imports for them yet. Then, the AstGen
workers do not need to be aware of modules. Instead, they simply ignore
module imports, and only spin off more workers when they see a by-path
import.
During AstGen, we can't use module-root-relative paths, since we don't
know which modules files are in; but we don't want to unnecessarily use
absolute files either, because those are non-portable and can make
`error.NameTooLong` more likely. As such, I have introduced a new
abstraction, `Compilation.Path`. This type is a way of representing a
filesystem path which has a *canonical form*. The path is represented
relative to one of a few special directories: the lib directory, the
global cache directory, or the local cache directory. As a fallback, we
use absolute (or cwd-relative on WASI) paths. This is kind of similar to
`std.Build.Cache.Path` with a pre-defined list of possible
`std.Build.Cache.Directory`, but has stricter canonicalization rules
based on path resolution to make sure deduplicating files works
properly. A `Compilation.Path` can be trivially converted to a
`std.Build.Cache.Path` from a `Compilation`, but is smaller, has a
canonical form, and has a digest which will be consistent across
different compiler processes with the same lib and cache directories
(important when we serialize incremental compilation state in the
future). `Zcu.File` and `Zcu.EmbedFile` both contain a
`Compilation.Path`, which is used to access the file on-disk;
module-relative sub paths are used quite rarely (`EmbedFile` doesn't
even have one now for simplicity).
After the AstGen workers all complete, we know that any file which might
be imported is definitely in `import_table` and up-to-date. So, we
perform a single-threaded graph traversal; similar to what
`resolveReferences` plays for `AnalUnit`s, but for files instead. We
figure out which files are alive, and which module each file is in. If a
file turns out to be in multiple modules, we set a field on `Zcu` to
indicate this error. If a file is in a different module to a prior
update, we set a flag instructing `updateZirRefs` to invalidate all
dependencies on the file. This traversal also discovers "import errors";
these are errors associated with a specific `@import`. With Zig's
current design, there is only one possible error here: "import outside
of module root". This must be identified during this traversal instead
of during AstGen, because it depends on which module the file is in. I
tried also representing "module not found" errors in this same way, but
it turns out to be much more useful to report those in Sema, because of
use cases like optional dependencies where a module import is behind a
comptime-known build option.
For simplicity, `failed_files` now just maps to `?[]u8`, since the
source location is always the whole file. In fact, this allows removing
`LazySrcLoc.Offset.entire_file` completely, slightly simplifying some
error reporting logic. File-level errors are now directly built in the
`std.zig.ErrorBundle.Wip`. If the payload is not `null`, it is the
message for a retryable error (i.e. an error loading the source file),
and will be reported with a "file imported here" note pointing to the
import site discovered during the single-threaded file traversal.
The last piece of fallout here is how `Builtin` works. Rather than
constructing "builtin" modules when creating `Package.Module`s, they are
now constructed on-the-fly by `Zcu`. The map `Zcu.builtin_modules` maps
from digests to `*Package.Module`s. These digests are abstract hashes of
the `Builtin` value; i.e. all of the options which are placed into
"builtin.zig". During the file traversal, we populate `builtin_modules`
as needed, so that when we see this imports in Sema, we just grab the
relevant entry from this map. This eliminates a bunch of awkward state
tracking during construction of the module graph. It's also now clearer
exactly what options the builtin module has, since previously it
inherited some options arbitrarily from the first-created module with
that "builtin" module!
The user-visible effects of this commit are:
* retryable file errors are now consistently reported against the whole
file, with a note pointing to a live import of that file
* some theoretical bugs where imports are wrongly considered distinct
(when the import path moves out of the cwd and then back in) are fixed
* some consistency issues with how file-level errors are reported are
fixed; these errors will now always be printed in the same order
regardless of how the AstGen pass assigns file indices
* incremental updates do not print retryable file errors differently
between updates or depending on file structure/contents
* incremental updates support files changing modules
* incremental updates support files becoming unreferenced
Resolves: #22696
Error messages never contain periods or grave accents.
Get rid of the periods and use apostrophes instead in
probably the only two error messages that had them.
* Indexing zero-bit types should not produce AIR indexing instructions
* Getting a runtime-known element pointer from a many-pointer should
check that the many-pointer is not comptime-only
Resolves: #23405
Translate-c didn't properly account for C macro functions having parameter names that are C keywords. So something like `#define FOO(float) ((float) + 10)` would've been interpreted as casting `+10` to a `float` type, instead of adding `10` to the parameter `float`.
An example of a real-world macro function like this is SDL3's `SDL_DEFINE_AUDIO_FORMAT` from `SDL_audio.h`, which uses `signed` as a parameter.
This commit reworks how Sema handles arithmetic on comptime-known
values, fixing many bugs in the process.
The general pattern is that arithmetic on comptime-known values is now
handled by the new namespace `Sema.arith`. Functions handling comptime
arithmetic no longer live on `Value`; this is because some of them can
emit compile errors, so some *can't* go on `Value`. Only semantic
analysis should really be doing arithmetic on `Value`s anyway, so it
makes sense for it to integrate more tightly with `Sema`.
This commit also implements more coherent rules surrounding how
`undefined` interacts with comptime and mixed-comptime-runtime
arithmetic. The rules are as follows.
* If an operation cannot trigger Illegal Behavior, and any operand is
`undefined`, the result is `undefined`. This includes operations like
`0 *| undef`, where the LHS logically *could* be used to determine a
defined result. This is partly to simplify the language, but mostly to
permit codegen backends to represent `undefined` values as completely
invalid states.
* If an operation *can* trigger Illegal Behvaior, and any operand is
`undefined`, then Illegal Behavior results. This occurs even if the
operand in question isn't the one that "decides" illegal behavior; for
instance, `undef / 1` is undefined. This is for the same reasons as
described above.
* An operation which would trigger Illegal Behavior, when evaluated at
comptime, instead triggers a compile error. Additionally, if one
operand is comptime-known undef, such that the other (runtime-known)
operand isn't needed to determine that Illegal Behavior would occur,
the compile error is triggered.
* The only situation in which an operation with one comptime-known
operand has a comptime-known result is if that operand is undefined,
in which case the result is either undefined or a compile error per
the above rules. This could potentially be loosened in future (for
instance, `0 * rt` could be comptime-known 0 with a runtime assertion
that `rt` is not undefined), but at least for now, defining it more
conservatively simplifies the language and allows us to easily change
this in future if desired.
This commit fixes many bugs regarding the handling of `undefined`,
particularly in vectors. Along with a collection of smaller tests, two
very large test cases are added to check arithmetic on `undefined`.
The operations which have been rewritten in this PR are:
* `+`, `+%`, `+|`, `@addWithOverflow`
* `-`, `-%`, `-|`, `@subWithOverflow`
* `*`, `*%`, `*|`, `@mulWithOverflow`
* `/`, `@divFloor`, `@divTrunc`, `@divExact`
* `%`, `@rem`, `@mod`
Other arithmetic operations are currently unchanged.
Resolves: #22743Resolves: #22745Resolves: #22748Resolves: #22749Resolves: #22914
* arm_apcs is the long dead "OABI" which we never had working support for.
* arm_aapcs16_vfp is for arm-watchos-none which is a dead target that we've
dropped support for.
This is all of the expected 0.14.0 progress on #21530, which can now be
postponed once this commit is merged.
This required rewriting the (un)wrap operations since the original
implementations were extremely buggy.
Also adds an easy way to retrigger Sema OPV bugs so that I don't have to
keep updating #22419 all the time.
This commit allows using ZON (Zig Object Notation) in a few ways.
* `@import` can be used to load ZON at comptime and convert it to a
normal Zig value. In this case, `@import` must have a result type.
* `std.zon.parse` can be used to parse ZON at runtime, akin to the
parsing logic in `std.json`.
* `std.zon.stringify` can be used to convert arbitrary data structures
to ZON at runtime, again akin to `std.json`.
This commit effectively reverts 9e683f0, and hence un-accepts #19777.
While nice in theory, this proposal turned out to have a few problems.
Firstly, supplying a result type implicitly coerces the operand to this
type -- that's the main point of result types! But for `try`, this is
actually a bad idea; we want a redundant `try` to be a compile error,
not to silently coerce the non-error value to an error union. In
practice, this didn't always happen, because the implementation was
buggy anyway; but when it did, it was really quite silly. For instance,
`try try ... try .{ ... }` was an accepted expression, with the inner
initializer being initially coerced to `E!E!...E!T`.
Secondly, the result type inference here didn't play nicely with
`return`. If you write `return try`, the operand would actually receive
a result type of `E!E!T`, since the `return` gave a result type of `E!T`
and the `try` wrapped it in *another* error union. More generally, the
problem here is that `try` doesn't know when it should or shouldn't
nest error unions. This occasionally broke code which looked like it
should work.
So, this commit prevents `try` from propagating result types through to
its operand. A key motivation for the original proposal here was decl
literals; so, as a special case, `try .foo(...)` is still an allowed
syntax form, caught by AstGen and specially lowered. This does open the
doors to allowing other special cases for decl literals in future, such
as `.foo(...) catch ...`, but those proposals are for another time.
Resolves: #21991Resolves: #22633
This instruction is like `intcast`, but includes two safety checks:
* Checks that the int is in range of the destination type
* If the destination type is an exhaustive enum, checks that the int
is a named enum value
This instruction is locked behind the `safety_checked_instructions`
backend feature; if unsupported, Sema will emit a fallback, as with
other safety-checked instructions.
This instruction is used to add a missing safety check for `@enumFromInt`
truncating bits. This check also has a fallback for backends which do
not yet support `safety_checked_instructions`.
Resolves: #21946
I recently saw a user hit the "comptime call of extern function" error,
and get confused because they didn't know why the scope was `comptime`.
So, use `explainWhyBlockIsComptime` on this and related errors to add
all the relevant notes.
The added test case shows the motivating situation.