This was done by regex substitution with `sed`. I then manually went
over the entire diff and fixed any incorrect changes.
This diff also changes a lot of `callconv(.C)` to `callconv(.c)`, since
my regex happened to also trigger here. I opted to leave these changes
in, since they *are* a correct migration, even if they're not the one I
was trying to do!
fix calculation of alignment and size
include __tls_align and __tls_size globals along with __tls_base
include them only if the TLS segment is emitted
add missing reloc logic for memory_addr_tls_sleb
fix name of data segments to include only the prefix
Object being linked has neither functions nor globals named "foo" or
"bar" and so these names correctly fail to be exported when creating an
executable.
I intentionally simplified the target features functionality to use the
target features that are explicitly specified to the linker and ignore
the "tooling conventions"
this makes the wasm linker behave the same as ELF, COFF, and MachO.
this tests for importing a function table, but the example source does
not try to use an imported table, so it's a useless check. it's unclear
what the behavior is even supposed to do in this case.
the other two cases are left alone.
The purpose of this test is unclear. It checks for the existence of bss
section which is completely unnecessary since those zeroes can be
omitted from the binary.
Furthermore the code generated for __wasm_init_memory looks wrong.
Finally, the CheckObject DSL is brittle, it only checks for exact
matches of entire lines in an ad-hoc text format. Conclusion, it's a bad
test, delete it.
`Type.hasWellDefinedLayout` was in disagreement with pointer loading
logic about auto-layout structs with zero fields, `struct {}`. For
consistency, these types should not have a well-defined layout.
This is technically a breaking change.
`Sema.explainWhyValueContainsReferenceToComptimeVar` (concise name!)
adds notes to an error explaining how to get from a given `Value` to a
pointer to some `comptime var` (or a comptime field). Previously, this
error could be very opaque in any case where it wasn't obvious where the
comptime var pointer came from; particularly for type captures. Now, the
error notes explain this to the user.
This rewrite improves some error messages, hugely simplifies the logic,
and fixes several bugs. One of these bugs is technically a new rule
which Andrew and I agreed on: if a parameter has a comptime-only type
but is not declared `comptime`, then the corresponding call argument
should not be *evaluated* at comptime; only resolved. Implementing this
required changing how function types work a little, which in turn
required allowing a new kind of function coercion for some generic use
cases: function coercions are now allowed to implicitly *remove*
`comptime` annotations from parameters with comptime-only types. This is
okay because removing the annotation affects only the call site.
Resolves: #22262
The relocation range issues will happen eventually as we add more code to the
standard library and test suites, so we may as well just deal with this now.
@MasonRemaley ran into this in #20271, for example.
The old lowering was kind of neat, but it unintentionally allowed the
syntax `for (123) |_| { ... }`, and there wasn't really a way to fix
that. So, instead, we include both the start and the end of the range in
the `for_len` instruction (each operand to `for` now has *two* entries
in this multi-op instruction). This slightly increases the size of ZIR
for loops of predominantly indexables, but the difference is small
enough that it's not worth complicating ZIR to try and fix it.
Previously, logic in `Compilation.getAllErrorsAlloc` was corrupting the
`failed_analysis` hashmap. This meant that on updates after the initial
update, attempts to remove entries from this map (because the `AnalUnit`
in question is being re-analyzed) silently failed. This resulted in
compile errors from earlier updates wrongly getting "stuck", i.e. never
being removed.
This commit also adds a few log calls which helped me to find this bug.
This commit separates semantic analysis of the annotated type vs value
of a global declaration, therefore allowing recursive and mutually
recursive values to be declared.
Every `Nav` which undergoes analysis now has *two* corresponding
`AnalUnit`s: `.{ .nav_val = n }` and `.{ .nav_ty = n }`. The `nav_val`
unit is responsible for *fully resolving* the `Nav`: determining its
value, linksection, addrspace, etc. The `nav_ty` unit, on the other
hand, resolves only the information necessary to construct a *pointer*
to the `Nav`: its type, addrspace, etc. (It does also analyze its
linksection, but that could be moved to `nav_val` I think; it doesn't
make any difference).
Analyzing a `nav_ty` for a declaration with no type annotation will just
mark a dependency on the `nav_val`, analyze it, and finish. Conversely,
analyzing a `nav_val` for a declaration *with* a type annotation will
first mark a dependency on the `nav_ty` and analyze it, using this as
the result type when evaluating the value body.
The `nav_val` and `nav_ty` units always have references to one another:
so, if a `Nav`'s type is referenced, its value implicitly is too, and
vice versa. However, these dependencies are trivial, so, to save memory,
are only known implicitly by logic in `resolveReferences`.
In general, analyzing ZIR `decl_val` will only analyze `nav_ty` of the
corresponding `Nav`. There are two exceptions to this. If the
declaration is an `extern` declaration, then we immediately ensure the
`Nav` value is resolved (which doesn't actually require any more
analysis, since such a declaration has no value body anyway).
Additionally, if the resolved type has type tag `.@"fn"`, we again
immediately resolve the `Nav` value. The latter restriction is in place
for two reasons:
* Functions are special, in that their externs are allowed to trivially
alias; i.e. with a declaration `extern fn foo(...)`, you can write
`const bar = foo;`. This is not allowed for non-function externs, and
it means that function types are the only place where it is possible
for a declaration `Nav` to have a `.@"extern"` value without actually
being declared `extern`. We need to identify this situation
immediately so that the `decl_ref` can create a pointer to the *real*
extern `Nav`, not this alias.
* In certain situations, such as taking a pointer to a `Nav`, Sema needs
to queue analysis of a runtime function if the value is a function. To
do this, the function value needs to be known, so we need to resolve
the value immediately upon `&foo` where `foo` is a function.
This restriction is simple to codify into the eventual language
specification, and doesn't limit the utility of this feature in
practice.
A consequence of this commit is that codegen and linking logic needs to
be more careful when looking at `Nav`s. In general:
* When `updateNav` or `updateFunc` is called, it is safe to assume that
the `Nav` being updated (the owner `Nav` for `updateFunc`) is fully
resolved.
* Any `Nav` whose value is/will be an `@"extern"` or a function is fully
resolved; see `Nav.getExtern` for a helper for a common case here.
* Any other `Nav` may only have its type resolved.
This didn't seem to be too tricky to satisfy in any of the existing
codegen/linker backends.
Resolves: #131
The new representation is often more compact. It is also more
straightforward to understand: for instance, `extern` is represented on
the `declaration` instruction itself rather than using a special
instruction. The same applies to `var`, making both of these far more
compact.
This commit also separates the type and value bodies of a `declaration`
instruction. This is a prerequisite for #131.
In general, `declaration` now directly encodes details of the syntax
form used, and the embedded ZIR bodies are for actual expressions. The
only exception to this is functions, where ZIR is effectively designed
as if we had #1717. `extern fn` declarations are modeled as
`extern const` with a function type, and normal `fn` definitions are
modeled as `const` with a `func{,_fancy,_inferred}` instruction. This
may change in the future, but improving on this was out of scope for
this commit.