These were failing on the prior commit. Unfortunately, the fix would
have been relatively complicated, and ties into underlying issues with
the current incremental compilation logic. After discussing this with
Andrew, we agreed that the best course of action is to completely
disable incremental compilation tests for now until it's more mature, at
which point we can re-enable them.
The idea here is that there are two ways we can reference a function at runtime:
* Through a direct call, i.e. where the function is comptime-known
* Through a function pointer
This means we can easily perform a form of rudimentary escape analysis
on functions. If we ever see a `decl_ref` or `ref` of a function, we
have a function pointer, which could "leak" into runtime code, so we
emit the function; but for a plain `decl_val`, there's no need to.
This change means that `comptime { _ = f; }` no longer forces a function
to be emitted, which was used for some things (mainly tests). These use
sites have been replaced with `_ = &f;`, which still triggers analysis
of the function body, since you're taking a pointer to the function.
Resolves: #6256Resolves: #15353
Also get rid of the TTY wrapper struct, which was exlusively used as a
namespace - this is done by the tty.zig root struct now.
detectTTYConfig has been renamed to just detectConfig, which is enough
given the new namespace. Additionally, a doc comment had been added.
This commit removes the `field_call_bind` and `field_call_bind_named` ZIR
instructions, replacing them with a `field_call` instruction which does the bind
and call in one.
`field_call_bind` is an unfortunate instruction. It's tied into one very
specific usage pattern - its result can only be used as a callee. This means
that it creates a value of a "pseudo-type" of sorts, `bound_fn` - this type used
to exist in Zig, but now we just hide it from the user and have AstGen ensure
it's only used in one way. This is quite silly - `Type` and `Value` should, as
much as possible, reflect real Zig types and values.
It makes sense to instead encode the `a.b()` syntax as its own ZIR instruction,
so that's what we do here. This commit introduces a new instruction,
`field_call`. It's like `call`, but rather than a callee ref, it contains a ref
to the object pointer (`&a` in `a.b()`) and the string field name (`b`). This
eliminates `bound_fn` from the language, and slightly decreases the size of
generated ZIR - stats below.
This commit does remove a few usages which used to be allowed:
- `@field(a, "b")()`
- `@call(.auto, a.b, .{})`
- `@call(.auto, @field(a, "b"), .{})`
These forms used to work just like `a.b()`, but are no longer allowed. I believe
this is the correct choice for a few reasons:
- `a.b()` is a purely *syntactic* form; for instance, `(a.b)()` is not valid.
This means it is *not* inconsistent to not allow it in these cases; the
special case here isn't "a field access as a callee", but rather this exact
syntactic form.
- The second argument to `@call` looks much more visually distinct from the
callee in standard call syntax. To me, this makes it seem strange for that
argument to not work like a normal expression in this context.
- A more practical argument: it's confusing! `@field` and `@call` are used in
very different contexts to standard function calls: the former normally hints
at some comptime machinery, and the latter that you want more precise control
over parts of a function call. In these contexts, you don't want implicit
arguments adding extra confusion: you want to be very explicit about what
you're doing.
Lastly, some stats. I mentioned before that this change slightly reduces the
size of ZIR - this is due to two instructions (`field_call_bind` then `call`)
being replaced with one (`field_call`). Here are some numbers:
+--------------+----------+----------+--------+
| File | Before | After | Change |
+--------------+----------+----------+--------+
| Sema.zig | 4.72M | 4.53M | -4% |
| AstGen.zig | 1.52M | 1.48M | -3% |
| hash_map.zig | 283.9K | 276.2K | -3% |
| math.zig | 312.6K | 305.3K | -2% |
+--------------+----------+----------+--------+
This instruction is not really working well in the LLVM SPIRV translator,
as it is not implemented.
This commit also intruces the constructStruct helper function to initialize
structs at runtime. This is ALSO buggy in the translator, and we must work
around OpCompositeConstruct not working when some of the constituents are
runtime-known only.
Some other improvements are made:
- improved variable() so that it is more useful and no longer requires the
address space. It always puts values in the Function address space,
and returns a pointer to the Generic address space
- adds a boolToInt utility function
This ensures that we can also cast enums and error sets here. In the future
this function will need to be changed to support composite and strange
integers, but that is fine.
It turns out that the Khronos LLVM SPIRV translator does not support OpPtrEqual.
Therefore, this instruction is emitted using a series of conversions.
This commit breaks intToEnum, because enum was removed from the arithmetic type
info. The enum should be converted to an int before this function is called.
Previously we incorrectly assumed all memset's to have its element
abi-size be 1 byte. This would set the region of memory incorrectly.
We now have a more efficient loop, as well as support any element
type by re-using the `store` function for each element and moving
the pointer by 1 element.
Previously when lowering a value of `elem_ptr` we would multiply the
abisize of the parent type by the index, rather than the element type.
This would result in an invalid pointer way beyond the correct pointer.
We now also pass the current offset to each recursive call to ensure
we do not miss inner offsets.
* Avoid redundant words ("found")
- All compile errors are found by the compiler
* Avoid unnecessary prepositions ("with")
- There is a grammatically correct alternate word order without the
preposition.