-- On the standard library side:
The `input: []const u8` parameter of functions passed to `testing.fuzz`
has changed to `smith: *testing.Smith`. `Smith` is used to generate
values from libfuzzer or input bytes generated by libfuzzer.
`Smith` contains the following base methods:
* `value` as a generic method for generating any type
* `eos` for generating end-of-stream markers. Provides the additional
guarantee `true` will eventually by provided.
* `bytes` for filling a byte array.
* `slice` for filling part of a buffer and providing the length.
`Smith.Weight` is used for giving value ranges a higher probability of
being selected. By default, every value has a weight of zero (i.e. they
will not be selected). Weights can only apply to values that fit within
a u64. The above functions have corresponding ones that accept weights.
Additionally, the following functions are provided:
* `baselineWeights` which provides a set of weights containing every
possible value of a type.
* `eosSimpleWeighted` for unique weights for `true` and `false`
* `valueRangeAtMost` and `valueRangeLessThan` for weighing only a range
of values.
-- On the libfuzzer and abi side:
--- Uids
These are u32s which are used to classify requested values. This solves
the problem of a mutation causing a new value to be requested and
shifting all future values; for example:
1. An initial input contains the values 1, 2, 3 which are interpreted
as a, b, and c respectively by the test.
2. The 1 is mutated to a 4 which causes the test to request an extra
value interpreted as d. The input is now 4, 2, 3, 5 (new value) which
the test corresponds to a, d, b, c; however, b and c no longer
correspond to their original values.
Uids contain a hash component and type component. The hash component
is currently determined in `Smith` by taking a hash of the calling
`@returnAddress()` or via an argument in the corresponding `WithHash`
functions. The type component is used extensively in libfuzzer with its
hashmaps.
--- Mutations
At the start of a cycle (a run), a random number of values to mutate is
selected with less being exponentially more likely. The indexes of the
values are selected from a selected uid with a logarithmic bias to uids
with more values.
Mutations may change a single values, several consecutive values in a
uid, or several consecutive values in the uid-independent order they
were requested. They may generate random values, mutate from previous
ones, or copy from other values in the same uid from the same input or
spliced from another.
For integers, mutations from previous ones currently only generates
random values. For bytes, mutations from previous mix new random data
and previous bytes with a set number of mutations.
--- Passive Minimization
A different approach has been taken for minimizing inputs: instead of
trying a fixed set of mutations when a fresh input is found, the input
is instead simply added to the corpus and removed when it is no longer
valuable.
The quality of an input is measured based off how many unique pcs it
hit and how many values it needed from the fuzzer. It is tracked which
inputs hold the best qualities for each pc for hitting the minimum and
maximum unique pcs while needing the least values.
Once all an input's qualities have been superseded for the pcs it hit,
it is removed from the corpus.
-- Comparison to byte-based smith
A byte-based smith would be much more inefficient and complex than this
solution. It would be unable to solve the shifting problem that Uids
do. It is unable to provide values from the fuzzer past end-of-stream.
Even with feedback, it would be unable to act on dynamic weights which
have proven essential with the updated tests (e.g. to constrain values
to a range).
-- Test updates
All the standard library tests have been updated to use the new smith
interface. For `Deque`, an ad hoc allocator was written to improve
performance and remove reliance on heap allocation. `TokenSmith` has
been added to aid in testing Ast and help inform decisions on the smith
interface.
This is relevant to PIEs, which are notably enabled by default on macOS.
The build system needs to only see virtual addresses, that is, those
which do not have the slide applied; but the fuzzer itself naturally
sees relocated addresses (i.e. with the slide applied). We just need to
subtract the slide when we communicate addresses to the build system.
For instance, when running a Zig test using the self-hosted aarch64
backend, this logic was previously expecting `std.zig.Server` to be
used, but the default test runner intentionally does not do this because
the backend is too immature to handle it. On 'master', this is causing
sporadic failures; on this branch, they became consistent failures.
This is a major refactor to `Step.Run` which adds new functionality,
primarily to the execution of Zig tests.
* All tests are run, even if a test crashes. This happens through the
same mechanism as timeouts where the test processes is repeatedly
respawned as needed.
* The build status output is more precise. For each unit test, it
differentiates pass, skip, fail, crash, and timeout. Memory leaks are
reported separately, as they do not indicate a test's "status", but
are rather an additional property (a test with leaks may still pass!).
* The number of memory leaks is tracked and reported, both per-test and
for a whole `Run` step.
* Reporting is made clearer when a step is failed solely due to error
logs (`std.log.err`) where every unit test passed.
For now, there is a flag to `zig build` called `--test-timeout-ms` which
accepts a value in milliseconds. If the execution time of any individual
unit test exceeds that number of milliseconds, the test is terminated
and marked as timed out.
In the future, we may want to increase the granularity of this feature
by allowing timeouts to be specified per-step or even per-test. However,
a global option is actually very useful. In particular, it can be used
in CI scripts to ensure that no individual unit test exceeds some
reasonable limit (e.g. 60 seconds) without having to assign limits to
every individual test step in the build script.
Also, individual unit test durations are now shown in the time report
web interface -- this was fairly trivial to add since we're timing tests
(to check for timeouts) anyway.
This commit makes progress on #19821, but does not close it, because
that proposal includes a more sophisticated mechanism for setting
timeouts.
Co-Authored-By: David Rubin <david@vortan.dev>
Adds the limit option to `--fuzz=[limit]`. the limit expresses a number
of iterations that *each fuzz test* will perform at maximum before
exiting. The limit argument supports also 'K', 'M', and 'G' suffixeds
(e.g. '10K').
Does not imply `--web-ui` (like unlimited fuzzing does) and prints a
fuzzing report at the end.
Closes#22900 but does not implement the time based limit, as after
internal discussions we concluded to be problematic to both implement
and use correctly.
This PR significantly improves the capabilities of the fuzzer.
The changes made to the fuzzer to accomplish this feat mostly include
tracking memory reads from .rodata to determine fresh inputs, new
mutations (especially the ones that insert const values from .rodata
reads and __sanitizer_conv_const_cmp), and minimizing found inputs.
Additionally, the runs per second has greatly been increased due to
generating smaller inputs and avoiding clearing the 8-bit pc counters.
An additional feature added is that the length of the input file is now
stored and the old input file is rerun upon start.
Other changes made to the fuzzer include more logical initialization,
using one shared file `in` for inputs, creating corpus files with
proper sizes, and using hexadecimal-numbered corpus files for
simplicity.
Furthermore, I added several new fuzz tests to gauge the fuzzer's
efficiency. I also tried to add a test for zstandard decompression,
which it crashed within 60,000 runs (less than a second.)
Bug fixes include:
* Fixed a race conditions when multiple fuzzer processes needed to use
the same coverage file.
* Web interface stats now update even when unique runs is not changing.
* Fixed tokenizer.testPropertiesUpheld to allow stray carriage returns
since they are valid whitespace.
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
preparing to rearrange std.io namespace into an interface
how to upgrade:
std.io.getStdIn() -> std.fs.File.stdin()
std.io.getStdOut() -> std.fs.File.stdout()
std.io.getStdErr() -> std.fs.File.stderr()
Nothing interesting here; literally just the bare minimum so I can work on this
on and off in a branch without worrying about merge conflicts in the non-backend
code.
breaking change to the fuzz testing API; it now passes a type-safe
context parameter to the fuzz function.
libfuzzer is reworked to select inputs from the entire corpus.
I tested that it's roughly as good as it was before in that it can find
the panics in the simple examples, as well as achieve decent coverage on
the tokenizer fuzz test.
however I think the next step here will be figuring out why so many
points of interest are missing from the tokenizer in both Debug and
ReleaseSafe modes.
does not quite close#20803 yet since there are some more important
things to be done, such as opening the previous corpus, continuing
fuzzing after finding bugs, storing the length of the inputs, etc.
This commit reworks how anonymous struct literals and tuples work.
Previously, an untyped anonymous struct literal
(e.g. `const x = .{ .a = 123 }`) was given an "anonymous struct type",
which is a special kind of struct which coerces using structural
equivalence. This mechanism was a holdover from before we used
RLS / result types as the primary mechanism of type inference. This
commit changes the language so that the type assigned here is a "normal"
struct type. It uses a form of equivalence based on the AST node and the
type's structure, much like a reified (`@Type`) type.
Additionally, tuples have been simplified. The distinction between
"simple" and "complex" tuple types is eliminated. All tuples, even those
explicitly declared using `struct { ... }` syntax, use structural
equivalence, and do not undergo staged type resolution. Tuples are very
restricted: they cannot have non-`auto` layouts, cannot have aligned
fields, and cannot have default values with the exception of `comptime`
fields. Tuples currently do not have optimized layout, but this can be
changed in the future.
This change simplifies the language, and fixes some problematic
coercions through pointers which led to unintuitive behavior.
Resolves: #16865
The previous API used `std.testing.fuzzInput(.{})` however that has the
problem that users call it multiple times incorrectly, and there might
be work happening to obtain the corpus which should not be included in
coverage analysis, and which must not slow down iteration speed.
This commit restructures it so that the main loop lives in libfuzzer and
directly calls the "test one" function.
In this commit I was a little too aggressive because I made the test
runner export `fuzzer_one` for this purpose. This was motivated by
performance, but it causes "exported symbol collision: fuzzer_one" to
occur when more than one fuzz test is provided.
There are three ways to solve this:
1. libfuzzer needs to be passed a function pointer instead. Possible
performance downside.
2. build runner needs to build a different process per fuzz test.
Potentially wasteful and unclear how to isolate them.
3. test runner needs to perform a relocation at runtime to point the
function call to the relevant unit test. Portability issues and
dubious performance gains.
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
* new .zig-cache subdirectory: 'v'
- stores coverage information with filename of hash of PCs that want
coverage. This hash is a hex encoding of the 64-bit coverage ID.
* build runner
* fixed bug in file system inputs when a compile step has an
overridden zig_lib_dir field set.
* set some std lib options optimized for the build runner
- no side channel mitigations
- no Transport Layer Security
- no crypto fork safety
* add a --port CLI arg for choosing the port the fuzzing web interface
listens on. it defaults to choosing a random open port.
* introduce a web server, and serve a basic single page application
- shares wasm code with autodocs
- assets are created live on request, for convenient development
experience. main.wasm is properly cached if nothing changes.
- sources.tar comes from file system inputs (introduced with the
`--watch` feature)
* receives coverage ID from test runner and sends it on a thread-safe
queue to the WebServer.
* test runner
- takes a zig cache directory argument now, for where to put coverage
information.
- sends coverage ID to parent process
* fuzzer
- puts its logs (in debug mode) in .zig-cache/tmp/libfuzzer.log
- computes coverage_id and makes it available with
`fuzzer_coverage_id` exported function.
- the memory-mapped coverage file is now namespaced by the coverage id
in hex encoding, in `.zig-cache/v`
* tokenizer
- add a fuzz test to check that several properties are upheld
When a unique run is encountered, track it in a bit set memory-mapped
into the fuzz directory so it can be observed by other processes, even
while the fuzzer is running.
This flag makes the build runner rebuild unit tests after the pipeline
finishes, if it finds any unit tests.
I did not make this integrate with file system watching yet.
The test runner is updated to detect which tests are fuzz tests.
Run step is updated to track which test indexes are fuzz tests.