Commit graph

8 commits

Author SHA1 Message Date
Kendall Condon
93775de45f rework fuzz testing to be smith based
-- On the standard library side:

The `input: []const u8` parameter of functions passed to `testing.fuzz`
has changed to `smith: *testing.Smith`. `Smith` is used to generate
values from libfuzzer or input bytes generated by libfuzzer.

`Smith` contains the following base methods:
* `value` as a generic method for generating any type
* `eos` for generating end-of-stream markers. Provides the additional
  guarantee `true` will eventually by provided.
* `bytes` for filling a byte array.
* `slice` for filling part of a buffer and providing the length.

`Smith.Weight` is used for giving value ranges a higher probability of
being selected. By default, every value has a weight of zero (i.e. they
will not be selected). Weights can only apply to values that fit within
a u64. The above functions have corresponding ones that accept weights.
Additionally, the following functions are provided:
* `baselineWeights` which provides a set of weights containing every
  possible value of a type.
* `eosSimpleWeighted` for unique weights for `true` and `false`
* `valueRangeAtMost` and `valueRangeLessThan` for weighing only a range
  of values.

-- On the libfuzzer and abi side:

--- Uids

These are u32s which are used to classify requested values. This solves
the problem of a mutation causing a new value to be requested and
shifting all future values; for example:

1. An initial input contains the values 1, 2, 3 which are interpreted
as a, b, and c respectively by the test.

2. The 1 is mutated to a 4 which causes the test to request an extra
value interpreted as d. The input is now 4, 2, 3, 5 (new value) which
the test corresponds to a, d, b, c; however, b and c no longer
correspond to their original values.

Uids contain a hash component and type component. The hash component
is currently determined in `Smith` by taking a hash of the calling
`@returnAddress()` or via an argument in the corresponding `WithHash`
functions. The type component is used extensively in libfuzzer with its
hashmaps.

--- Mutations

At the start of a cycle (a run), a random number of values to mutate is
selected with less being exponentially more likely. The indexes of the
values are selected from a selected uid with a logarithmic bias to uids
with more values.

Mutations may change a single values, several consecutive values in a
uid, or several consecutive values in the uid-independent order they
were requested. They may generate random values, mutate from previous
ones, or copy from other values in the same uid from the same input or
spliced from another.

For integers, mutations from previous ones currently only generates
random values. For bytes, mutations from previous mix new random data
and previous bytes with a set number of mutations.

--- Passive Minimization

A different approach has been taken for minimizing inputs: instead of
trying a fixed set of mutations when a fresh input is found, the input
is instead simply added to the corpus and removed when it is no longer
valuable.

The quality of an input is measured based off how many unique pcs it
hit and how many values it needed from the fuzzer. It is tracked which
inputs hold the best qualities for each pc for hitting the minimum and
maximum unique pcs while needing the least values.

Once all an input's qualities have been superseded for the pcs it hit,
it is removed from the corpus.

-- Comparison to byte-based smith

A byte-based smith would be much more inefficient and complex than this
solution. It would be unable to solve the shifting problem that Uids
do. It is unable to provide values from the fuzzer past end-of-stream.
Even with feedback, it would be unable to act on dynamic weights which
have proven essential with the updated tests (e.g. to constrain values
to a range).

-- Test updates

All the standard library tests have been updated to use the new smith
interface. For `Deque`, an ad hoc allocator was written to improve
performance and remove reliance on heap allocation. `TokenSmith` has
been added to aid in testing Ast and help inform decisions on the smith
interface.
2025-11-23 14:58:22 -05:00
Kendall Condon
0dbbb93dbe fix fuzzing speed with prior runs 2025-11-23 12:20:59 -05:00
Matthew Lugg
010dcd6a9b
fuzzer: account for runtime address slide
This is relevant to PIEs, which are notably enabled by default on macOS.
The build system needs to only see virtual addresses, that is, those
which do not have the slide applied; but the fuzzer itself naturally
sees relocated addresses (i.e. with the slide applied). We just need to
subtract the slide when we communicate addresses to the build system.
2025-11-20 10:42:20 +00:00
mlugg
7e7d7875b9
std.Build: implement unit test timeouts
For now, there is a flag to `zig build` called `--test-timeout-ms` which
accepts a value in milliseconds. If the execution time of any individual
unit test exceeds that number of milliseconds, the test is terminated
and marked as timed out.

In the future, we may want to increase the granularity of this feature
by allowing timeouts to be specified per-step or even per-test. However,
a global option is actually very useful. In particular, it can be used
in CI scripts to ensure that no individual unit test exceeds some
reasonable limit (e.g. 60 seconds) without having to assign limits to
every individual test step in the build script.

Also, individual unit test durations are now shown in the time report
web interface -- this was fairly trivial to add since we're timing tests
(to check for timeouts) anyway.

This commit makes progress on #19821, but does not close it, because
that proposal includes a more sophisticated mechanism for setting
timeouts.

Co-Authored-By: David Rubin <david@vortan.dev>
2025-10-18 09:28:39 +01:00
Loris Cro
9bb0b43ea3 implement review suggestions 2025-09-25 18:20:19 +02:00
Loris Cro
0feacc2b81 fuzzing: implement limited fuzzing
Adds the limit option to `--fuzz=[limit]`. the limit expresses a number
of iterations that *each fuzz test* will perform at maximum before
exiting. The limit argument supports also 'K', 'M', and 'G' suffixeds
(e.g. '10K').

Does not imply `--web-ui` (like unlimited fuzzing does) and prints a
fuzzing report at the end.

Closes #22900 but does not implement the time based limit, as after
internal discussions we concluded to be problematic to both implement
and use correctly.
2025-09-24 12:46:48 +02:00
Kendall Condon
e66b269333 greatly improve capabilities of the fuzzer
This PR significantly improves the capabilities of the fuzzer.

The changes made to the fuzzer to accomplish this feat mostly include
tracking memory reads from .rodata to determine fresh inputs, new
mutations (especially the ones that insert const values from .rodata
reads and __sanitizer_conv_const_cmp), and minimizing found inputs.
Additionally, the runs per second has greatly been increased due to
generating smaller inputs and avoiding clearing the 8-bit pc counters.

An additional feature added is that the length of the input file is now
stored and the old input file is rerun upon start.

Other changes made to the fuzzer include more logical initialization,
using one shared file `in` for inputs, creating corpus files with
proper sizes, and using hexadecimal-numbered corpus files for
simplicity.

Furthermore, I added several new fuzz tests to gauge the fuzzer's
efficiency. I also tried to add a test for zstandard decompression,
which it crashed within 60,000 runs (less than a second.)

Bug fixes include:
* Fixed a race conditions when multiple fuzzer processes needed to use
the same coverage file.
* Web interface stats now update even when unique runs is not changing.
* Fixed tokenizer.testPropertiesUpheld to allow stray carriage returns
since they are valid whitespace.
2025-09-18 18:56:10 -04:00
mlugg
dcc3e6e1dd build system: replace fuzzing UI with build UI, add time report
This commit replaces the "fuzzer" UI, previously accessed with the
`--fuzz` and `--port` flags, with a more interesting web UI which allows
more interactions with the Zig build system. Most notably, it allows
accessing the data emitted by a new "time report" system, which allows
users to see which parts of Zig programs take the longest to compile.

The option to expose the web UI is `--webui`. By default, it will listen
on `[::1]` on a random port, but any IPv6 or IPv4 address can be
specified with e.g. `--webui=[::1]:8000` or `--webui=127.0.0.1:8000`.
The options `--fuzz` and `--time-report` both imply `--webui` if not
given. Currently, `--webui` is incompatible with `--watch`; specifying
both will cause `zig build` to exit with a fatal error.

When the web UI is enabled, the build runner spawns the web server as
soon as the configure phase completes. The frontend code consists of one
HTML file, one JavaScript file, two CSS files, and a few Zig source
files which are built into a WASM blob on-demand -- this is all very
similar to the old fuzzer UI. Also inherited from the fuzzer UI is that
the build system communicates with web clients over a WebSocket
connection.

When the build finishes, if `--webui` was passed (i.e. if the web server
is running), the build runner does not terminate; it continues running
to serve web requests, allowing interactive control of the build system.

In the web interface is an overall "status" indicating whether a build
is currently running, and also a list of all steps in this build. There
are visual indicators (colors and spinners) for in-progress, succeeded,
and failed steps. There is a "Rebuild" button which will cause the build
system to reset the state of every step (note that this does not affect
caching) and evaluate the step graph again.

If `--time-report` is passed to `zig build`, a new section of the
interface becomes visible, which associates every build step with a
"time report". For most steps, this is just a simple "time taken" value.
However, for `Compile` steps, the compiler communicates with the build
system to provide it with much more interesting information: time taken
for various pipeline phases, with a per-declaration and per-file
breakdown, sorted by slowest declarations/files first. This feature is
still in its early stages: the data can be a little tricky to
understand, and there is no way to, for instance, sort by different
properties, or filter to certain files. However, it has already given us
some interesting statistics, and can be useful for spotting, for
instance, particularly complex and slow compile-time logic.
Additionally, if a compilation uses LLVM, its time report includes the
"LLVM pass timing" information, which was previously accessible with the
(now removed) `-ftime-report` compiler flag.

To make time reports more useful, ZIR and compilation caches are ignored
by the Zig compiler when they are enabled -- in other words, `Compile`
steps *always* run, even if their result should be cached. This means
that the flag can be used to analyze a project's compile time without
having to repeatedly clear cache directory, for instance. However, when
using `-fincremental`, updates other than the first will only show you
the statistics for what changed on that particular update. Notably, this
gives us a fairly nice way to see exactly which declarations were
re-analyzed by an incremental update.

If `--fuzz` is passed to `zig build`, another section of the web
interface becomes visible, this time exposing the fuzzer. This is quite
similar to the fuzzer UI this commit replaces, with only a few cosmetic
tweaks. The interface is closer than before to supporting multiple fuzz
steps at a time (in line with the overall strategy for this build UI,
the goal will be for all of the fuzz steps to be accessible in the same
interface), but still doesn't actually support it. The fuzzer UI looks
quite different under the hood: as a result, various bugs are fixed,
although other bugs remain. For instance, viewing the source code of any
file other than the root of the main module is completely broken (as on
master) due to some bogus file-to-module assignment logic in the fuzzer
UI.

Implementation notes:

* The `lib/build-web/` directory holds the client side of the web UI.

* The general server logic is in `std.Build.WebServer`.

* Fuzzing-specific logic is in `std.Build.Fuzz`.

* `std.Build.abi` is the new home of `std.Build.Fuzz.abi`, since it now
  relates to the build system web UI in general.

* The build runner now has an **actual** general-purpose allocator,
  because thanks to `--watch` and `--webui`, the process can be
  arbitrarily long-lived. The gpa is `std.heap.DebugAllocator`, but the
  arena remains backed by `std.heap.page_allocator` for efficiency. I
  fixed several crashes caused by conflation of `gpa` and `arena` in the
  build runner and `std.Build`, but there may still be some I have
  missed.

* The I/O logic in `std.Build.WebServer` is pretty gnarly; there are a
  *lot* of threads involved. I anticipate this situation improving
  significantly once the `std.Io` interface (with concurrency support)
  is introduced.
2025-08-01 23:48:21 +01:00