-- On the standard library side:
The `input: []const u8` parameter of functions passed to `testing.fuzz`
has changed to `smith: *testing.Smith`. `Smith` is used to generate
values from libfuzzer or input bytes generated by libfuzzer.
`Smith` contains the following base methods:
* `value` as a generic method for generating any type
* `eos` for generating end-of-stream markers. Provides the additional
guarantee `true` will eventually by provided.
* `bytes` for filling a byte array.
* `slice` for filling part of a buffer and providing the length.
`Smith.Weight` is used for giving value ranges a higher probability of
being selected. By default, every value has a weight of zero (i.e. they
will not be selected). Weights can only apply to values that fit within
a u64. The above functions have corresponding ones that accept weights.
Additionally, the following functions are provided:
* `baselineWeights` which provides a set of weights containing every
possible value of a type.
* `eosSimpleWeighted` for unique weights for `true` and `false`
* `valueRangeAtMost` and `valueRangeLessThan` for weighing only a range
of values.
-- On the libfuzzer and abi side:
--- Uids
These are u32s which are used to classify requested values. This solves
the problem of a mutation causing a new value to be requested and
shifting all future values; for example:
1. An initial input contains the values 1, 2, 3 which are interpreted
as a, b, and c respectively by the test.
2. The 1 is mutated to a 4 which causes the test to request an extra
value interpreted as d. The input is now 4, 2, 3, 5 (new value) which
the test corresponds to a, d, b, c; however, b and c no longer
correspond to their original values.
Uids contain a hash component and type component. The hash component
is currently determined in `Smith` by taking a hash of the calling
`@returnAddress()` or via an argument in the corresponding `WithHash`
functions. The type component is used extensively in libfuzzer with its
hashmaps.
--- Mutations
At the start of a cycle (a run), a random number of values to mutate is
selected with less being exponentially more likely. The indexes of the
values are selected from a selected uid with a logarithmic bias to uids
with more values.
Mutations may change a single values, several consecutive values in a
uid, or several consecutive values in the uid-independent order they
were requested. They may generate random values, mutate from previous
ones, or copy from other values in the same uid from the same input or
spliced from another.
For integers, mutations from previous ones currently only generates
random values. For bytes, mutations from previous mix new random data
and previous bytes with a set number of mutations.
--- Passive Minimization
A different approach has been taken for minimizing inputs: instead of
trying a fixed set of mutations when a fresh input is found, the input
is instead simply added to the corpus and removed when it is no longer
valuable.
The quality of an input is measured based off how many unique pcs it
hit and how many values it needed from the fuzzer. It is tracked which
inputs hold the best qualities for each pc for hitting the minimum and
maximum unique pcs while needing the least values.
Once all an input's qualities have been superseded for the pcs it hit,
it is removed from the corpus.
-- Comparison to byte-based smith
A byte-based smith would be much more inefficient and complex than this
solution. It would be unable to solve the shifting problem that Uids
do. It is unable to provide values from the fuzzer past end-of-stream.
Even with feedback, it would be unable to act on dynamic weights which
have proven essential with the updated tests (e.g. to constrain values
to a range).
-- Test updates
All the standard library tests have been updated to use the new smith
interface. For `Deque`, an ad hoc allocator was written to improve
performance and remove reliance on heap allocation. `TokenSmith` has
been added to aid in testing Ast and help inform decisions on the smith
interface.
`std.Io.tty.Config.detect` may be an expensive check (e.g. involving
syscalls), and doing it every time we need to print isn't really
necessary; under normal usage, we can compute the value once and cache
it for the whole program's execution. Since anyone outputting to stderr
may reasonably want this information (in fact they are very likely to),
it makes sense to cache it and return it from `lockStderrWriter`. Call
sites who do not need it will experience no significant overhead, and
can just ignore the TTY config with a `const w, _` destructure.
Previously, the logic in peekDelimiterInclusive (when the delimiter was not found in the existing buffer) used the `n` returned from `r.vtable.stream` as the length of the slice to check, but it's valid for `vtable.stream` implementations to return 0 if they wrote to the buffer instead of `w`. In that scenario, the `indexOfScalarPos` would be given a 0-length slice so it would never be able to find the delimiter.
This commit changes the logic to assume that `r.vtable.stream` can both:
- return 0, and
- modify seek/end (i.e. it's also valid for a `vtable.stream` implementation to rebase)
Also introduces `std.testing.ReaderIndirect` which helps in being able to test against Reader implementations that return 0 from `stream`/`readVec`
Fixes#25428
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
preparing to rearrange std.io namespace into an interface
how to upgrade:
std.io.getStdIn() -> std.fs.File.stdin()
std.io.getStdOut() -> std.fs.File.stdout()
std.io.getStdErr() -> std.fs.File.stderr()
Nothing interesting here; literally just the bare minimum so I can work on this
on and off in a branch without worrying about merge conflicts in the non-backend
code.
breaking change to the fuzz testing API; it now passes a type-safe
context parameter to the fuzz function.
libfuzzer is reworked to select inputs from the entire corpus.
I tested that it's roughly as good as it was before in that it can find
the panics in the simple examples, as well as achieve decent coverage on
the tokenizer fuzz test.
however I think the next step here will be figuring out why so many
points of interest are missing from the tokenizer in both Debug and
ReleaseSafe modes.
does not quite close#20803 yet since there are some more important
things to be done, such as opening the previous corpus, continuing
fuzzing after finding bugs, storing the length of the inputs, etc.
This was done by regex substitution with `sed`. I then manually went
over the entire diff and fixed any incorrect changes.
This diff also changes a lot of `callconv(.C)` to `callconv(.c)`, since
my regex happened to also trigger here. I opted to leave these changes
in, since they *are* a correct migration, even if they're not the one I
was trying to do!
The previous API used `std.testing.fuzzInput(.{})` however that has the
problem that users call it multiple times incorrectly, and there might
be work happening to obtain the corpus which should not be included in
coverage analysis, and which must not slow down iteration speed.
This commit restructures it so that the main loop lives in libfuzzer and
directly calls the "test one" function.
In this commit I was a little too aggressive because I made the test
runner export `fuzzer_one` for this purpose. This was motivated by
performance, but it causes "exported symbol collision: fuzzer_one" to
occur when more than one fuzz test is provided.
There are three ways to solve this:
1. libfuzzer needs to be passed a function pointer instead. Possible
performance downside.
2. build runner needs to build a different process per fuzz test.
Potentially wasteful and unclear how to isolate them.
3. test runner needs to perform a relocation at runtime to point the
function call to the relevant unit test. Portability issues and
dubious performance gains.
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
switch from `inline for` with `std.mem.eql`
to `inline else` and tag comparison;
expectEqualDeep(Inner) was already doing this.
add a previously-failing test case.
This mainly replaces ChunkIterator with std.mem.window and also
prints \n, \r, \t using Unicode symbols instead of periods because
they're common non-printable characters.
This same code exists in std.debug.hexdump.
At some point maybe this code could be exposed through a public
function. Then we could reuse the code in both places.
This commit changes the type of the second parameter to `anytype`, which should make it easier to pass literals to these functions. This change shouldn't *silently* break existing code (the assertions themselves should retain the same behavior as before) but it may result in some new compile errors when struct/union/array literals or builtins like `@bitCast` are used for the second argument. These compile errors can be fixed by explicitly coercing these expressions to the correct type using `@as`.
This reverts commit da94227f78, reversing
changes made to 8f943b3d33.
I was against this change originally, but decided to approve it to keep
an open mind. After a year of trying it in practice, I firmly believe
that the previous way of doing it was better.
Now that allocator.resize() is allowed to fail, programs may wish to
test code paths that handle resize() failure. The simplest way to do
this now is to replace the vtable of the testing allocator with one
that uses Allocator.noResize for the 'resize' function pointer.
An alternative way to support this testing capability is to augment the
FailingAllocator (which is already useful for testing allocation failure
scenarios) to intentionally fail on calls to resize(). To do this, add a
'resize_fail_index' parameter to the FailingAllocator that causes
resize() to fail after the given number of calls.