The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
* Rename isPPC() -> isPowerPC32().
* Rename isPPC64() -> isPowerPC64().
* Add new isPowerPC() function which covers both.
There was confusion even in the standard library about what isPPC() meant. This
change makes these functions work how I think most people actually expect them
to work, and makes them consistent with isMIPS(), isSPARC(), etc.
I chose to rename from PPC to PowerPC because 1) it's more consistent with the
other functions, and 2) it'll cause loud rather than silent breakage for anyone
who might have been depending on isPPC() while misunderstanding it.
* the file's doc-comment was misleading and did not focus on the correct aspect of SIMD
* added cpu flag awareness to `suggestVectorLengthForCpu` in order to provide a more accurate vector length
A lot of these "shorthand" doc comments were redundant, low quality
filler content. Better to let the actual modules speak for themselves
with top level doc comments rather than trying to document their
aliases.
The function returns the vector length, not the byte size of the vector or the bit size of individual elements. This distinction is very important and some usages of this function in the stdlib operated under these incorrect assumptions.
This reverts commit 0c99ba1eab, reversing
changes made to 5f92b070bf.
This caused a CI failure when it landed in master branch due to a
128-bit `@byteSwap` in std.mem.
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
The majority of these are in comments, some in doc comments which might
affect the generated documentation, and a few in parameter names -
nothing that should be breaking, however.
This reverts commit 3370d58956.
This commit was done with an LLVM build that did not have assertions
enabled. There are LLVM assertions being triggered due to this commit.
Reopens#10627Reopens#12013Reopens#12027
There are still a few occurrences of "stage1" in the standard library
and self-hosted compiler source, however, these instances need a bit
more careful inspection to ensure no breakage.
architectures
The idea behind this is using the register capabilities in safe amounts,
there is still some consideration to be done.
+ Fixed compile error using std.Target.<arch>.featureSetHas
+ X86 MMX and "3DNOW" 64 bits register usage considered for vector size
+ Added ARM Neon recommened usage of 128 bits (The size of the register)
+ Added AARCH64 Neon and SVE for 128 bits. SVE could use in theory up to
2048 bits, but found only evidence of functional 512 bits on a super
computer, decided on using 128 bits as a safety
+ Added Altivec recommendation of using the 128 bits long register
+ Using MIPS msa 2x64bits capabilities, usage of 64 bits registers for MDMX
systems, need testing on how using bigger values affect performance
+ Using V extension on RISC-V, which is extendable via instructions, decided on 128 bits
as a value to not use all registers
+ in SPARC the 64 bits registers are used, a max of 32 registers
are to be used for configurable simd instructions, decided on using
the size of the register, need testing on performance hit on using a
bigger sized register vector size
Fixes#11353
The renderer treats comments and doc comments differently since doc
comments are parsed into the Ast. This commit adds a check after getting
the text for the doc comment and trims whitespace at the end before
rendering.
The `a = 0,` in the test is here to avoid a ParseError while parsing the
test.
This file contains a collections of functions that may be useful for SIMD, such as generating a vector with a linear range of numbers starting at zero, joining two vectors together, getting the index of the first true in a vector of bools, etc.