Simplifies the logic, clarifies the comment, and fixes a minor bug,
which is that we exported the Windows ABI name *instead* of the standard
compiler-rt name, but it's meant to be exported *in addition* to the
standard name (this is LLVM's behavior and it is more useful).
Apple's own headers and tbd files prefer to think of Mac Catalyst as a distinct
OS target. Earlier, when DriverKit support was added to LLVM, it was represented
a distinct OS. So why Apple decided to only represent Mac Catalyst as an ABI in
the target triple is beyond me. But this isn't the first time they've ignored
established target triple norms (see: armv7k and aarch64_32) and it probably
won't be the last.
While doing this, I also audited all Darwin OS prongs throughout the codebase
and made sure they cover all the tags.
`__addosi4`, `__addodi4`, `__addoti4`, `__subosi4`, `__subodi4`, and
`__suboti4` were all functions which we invented for no apparent reason.
Neither LLVM, nor GCC, nor the Zig compiler use these functions. It
appears the functions were created in a kind of misunderstanding of an
old language proposal; see https://github.com/ziglang/zig/pull/10824.
There is no benefit to these functions existing; if a Zig compiler
backend needs this operation, it is trivial to implement, and *far*
simpler than calling a compiler-rt routine. Therefore, this commit
deletes them. A small amount of that code was used by other parts of
compiler-rt; the logic is trivial so has just been inlined where needed.
I also chose to quickly implement `__addvdi3` (a standard function)
because it is trivial and we already implement the `sub` parallel.
The previous version (ported from musl) used bit-by-bit calculations and was slow, but the current version (also ported from musl) uses lookup tables combined with Goldschmidt iterations to significantly improve the speed.
FreeBSD normally provides this symbol in libc, but it's in the
FBSDprivate_1.0 namespace, so it doesn't get included in our abilists file.
Fortunately, the implementation is identical for Linux and FreeBSD, so we can
just provide it in compiler-rt.
It's interesting to note that the same is not true for NetBSD where the
implementation is more complex to support older Arm versions. But we do include
the symbol in our abilists file for NetBSD libc, so that's fine.
closes#25215
LLVM 21 has started recognizing strlen-like idioms and optimizing them to strlen
calls, so we need this function provided in compiler-rt for libc-less
compilations.
The big endian RISC-V effort is mostly driven by MIPS (the company) which is
pivoting to RISC-V, and presumably needs a big endian variant to fill the niche
that big endian MIPS (the ISA) did.
GCC already supports these targets, but LLVM support will only appear in 22;
this commit just adds the necessary target knowledge and checks on our end.
This is not meant to be a long-term solution, but it's the easiest thing
to get working quickly at the moment. The main intention of this hack is
to allow more tests to be enabled. By the time the coff linker is far
enough along to be enabled by default, this will no longer be required.
If you write an if expression in mem.doNotOptimizeAway like
doNotOptimizeAway(if (ix < 0x00100000) x / 0x1p120 else x + 0x1p120);,
FCSEL instruction is used on AArch64.
FCSEL instruction selects one of the two registers according to
the condition and copies its value.
In this example, `x / 0x1p120` and `x + 0x1p120` are expressions
that raise different floating-point exceptions.
However, since both are actually evaluated before the FCSEL
instruction, the exception not intended by the programmer may
also be raised.
To prevent FCSEL instruction from being used here, this commit
splits doNotOptimizeAway in two.
This prevents symbols from these libraries from polluting the dynamic symbol
tables of binaries built with Zig. The downside is that we no longer deduplicate
the symbols at run time due to weak linkage.
Closes#7935.
Closes#13303.
Closes#19342.