The build runner was previously forcing child processes to have their
stderr colorization match the build runner by setting `CLICOLOR_FORCE`
or `NO_COLOR`. This is a nice idea in some cases---for instance a simple
`Run` step which we just expect to exit with code 0 and whose stderr is
not being programmatically inspected---but is a bad idea in others, for
instance if there is a check on stderr or if stderr is captured, in
which case forcing color on the child could cause checks to fail.
Instead, this commit adds a field to `std.Build.Step.Run` which
specifies a behavior for the build runner to employ in terms of
assigning the `CLICOLOR_FORCE` and `NO_COLOR` environment variables. The
default behavior is to set `CLICOLOR_FORCE` if the build runner's output
is colorized and the step's stderr is not captured, and to set
`NO_COLOR` otherwise. Alternatively, colors can be always enabled,
always disabled, always match the build runner, or the environment
variables can be left untouched so they can be manually controlled
through `env_map`.
Notably, this fixes a failure when running `zig build test-cli` in a
TTY (or with colors explicitly enabled). GitHub CI hadn't caught this
because it does not request color, but Codeberg CI now does, and we were
seeing a failure in the `zig init` test because the actual output had
color escape codes in it due to 6d280dc.
Apple's own headers and tbd files prefer to think of Mac Catalyst as a distinct
OS target. Earlier, when DriverKit support was added to LLVM, it was represented
a distinct OS. So why Apple decided to only represent Mac Catalyst as an ABI in
the target triple is beyond me. But this isn't the first time they've ignored
established target triple norms (see: armv7k and aarch64_32) and it probably
won't be the last.
While doing this, I also audited all Darwin OS prongs throughout the codebase
and made sure they cover all the tags.
There is no straightforward way for the Zig team to access the Solaris system
headers; to do this, one has to create an Oracle account, accept their EULA to
download the installer ISO, and finally install it on a machine or VM. We do not
have to jump through hoops like this for any other OS that we support, and no
one on the team has expressed willingness to do it.
As a result, we cannot audit any Solaris contributions to std.c or other
similarly sensitive parts of the standard library. The best we would be able to
do is assume that Solaris and illumos are 100% compatible with no way to verify
that assumption. But at that point, the solaris and illumos OS tags would be
functionally identical anyway.
For Solaris especially, any contributions that involve APIs introduced after the
OS was made closed-source would also be inherently more risky than equivalent
contributions for other proprietary OSs due to the case of Google LLC v. Oracle
America, Inc., wherein Oracle clearly demonstrated its willingness to pursue
legal action against entities that merely copy API declarations.
Finally, Oracle laid off most of the Solaris team in 2017; the OS has been in
maintenance mode since, presumably to be retired completely sometime in the 2030s.
For these reasons, this commit removes all Oracle Solaris support.
Anyone who still wishes to use Zig on Solaris can try their luck by simply using
illumos instead of solaris in target triples - chances are it'll work. But there
will be no effort from the Zig team to support this use case; we recommend that
people move to illumos instead.
* add macos handling for totalSystemMemory
* fix return type cast for .freebsd in totalSystemMemory
* add handling for the whole Darwin family in totalSystemMemory
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
Both sliceTo and indexOfScalarPos use SIMD when available to speed up the search. On my x86_64 machine, this leads to getenvW being around 2-3x faster overall.
Additionally, any future improvements to sliceTo/indexOfScalarPos will benefit getenvW.
This code previously added 4 NUL code units, but that was likely due to a misinterpretation of this part of the CreateProcess documentation:
> A Unicode environment block is terminated by four zero bytes: two for the last string, two more to terminate the block.
(four zero *bytes* means *two* zero code units)
Additionally, the second zero code unit is only actually needed when the environment is empty due to a quirk of the CreateProcess implementation. In the case of a non-empty environment, there always ends up being two trailing NUL code units since one will come after the last environment variable in the block.
* fix merge conflicts
* rename the declarations
* reword documentation
* extract FixedBufferAllocator to separate file
* take advantage of locals
* remove the assertion about max alignment in Allocator API, leaving it
Allocator implementation defined
* fix non-inline function call in start logic
The GeneralPurposeAllocator implementation is totally broken because it
uses global state but I didn't address that in this commit.
heap.zig: define new default page sizes
heap.zig: add min/max_page_size and their options
lib/std/c: add miscellaneous declarations
heap.zig: add pageSize() and its options
switch to new page sizes, especially in GPA/stdlib
mem.zig: remove page_size
It is now composed of these main sections:
* Declarations that are shared among all operating systems.
* Declarations that have the same name, but different type signatures
depending on the operating system. Often multiple operating systems
share the same type signatures however.
* Declarations that are specific to a single operating system.
- These are imported one per line so you can see where they come from,
protected by a comptime block to prevent accessing the wrong one.
Closes#19352 by changing the convention to making types `void` and
functions `{}`, so that it becomes possible to update `@hasDecl` sites
to use `@TypeOf(f) != void` or `T != void`. Happily, this ended up
removing some duplicate logic and update some bitrotted feature
detection checks.
A handful of types have been modified to gain namespacing and type
safety. This is a breaking change.
Oh, and the last usage of `usingnamespace` site is eliminated.
Now that we use the PEB to get the precise length of the command line string, there's no need for a multi-item pointer/sliceTo call. This provides a minor speedup:
Benchmark 1 (153 runs): benchargv-before.exe
measurement mean ± σ min … max outliers delta
wall_time 32.7ms ± 429us 32.1ms … 36.9ms 1 ( 1%) 0%
peak_rss 6.49MB ± 5.62KB 6.46MB … 6.49MB 14 ( 9%) 0%
Benchmark 2 (157 runs): benchargv-after.exe
measurement mean ± σ min … max outliers delta
wall_time 31.9ms ± 236us 31.4ms … 32.7ms 4 ( 3%) ⚡- 2.4% ± 0.2%
peak_rss 6.49MB ± 4.77KB 6.46MB … 6.49MB 14 ( 9%) + 0.0% ± 0.0%
Previously, to ensure args were encoded as well-formed WTF-8 (i.e. no encoded surrogate pairs), the code unit would be encoded and then the last 6 emitted bytes would be checked to see if they were a surrogate pair, and this was done for any emitted code unit (although this was not necessary, it should have only been done when emitting a low surrogate).
After this commit, we still want to ensure well-formed WTF-8, but, to do so, the last emitted code point is stored, meaning we can just directly check that the last code unit is a high surrogate and the current code unit is a low surrogate to determine if we have a surrogate pair.
This provides some performance benefit over and above a "use the same strategy as before but only check when we're emitting a low surrogate" implementation:
Benchmark 1 (111 runs): benchargv-master.exe
measurement mean ± σ min … max outliers delta
wall_time 45.2ms ± 532us 44.5ms … 49.4ms 2 ( 2%) 0%
peak_rss 6.49MB ± 3.94KB 6.46MB … 6.49MB 10 ( 9%) 0%
Benchmark 2 (154 runs): benchargv-storelast.exe
measurement mean ± σ min … max outliers delta
wall_time 32.6ms ± 293us 32.2ms … 34.2ms 8 ( 5%) ⚡- 27.8% ± 0.2%
peak_rss 6.49MB ± 5.15KB 6.46MB … 6.49MB 15 (10%) - 0.0% ± 0.0%
Benchmark 3 (131 runs): benchargv-onlylow.exe
measurement mean ± σ min … max outliers delta
wall_time 38.4ms ± 257us 37.9ms … 39.6ms 5 ( 4%) ⚡- 15.1% ± 0.2%
peak_rss 6.49MB ± 5.70KB 6.46MB … 6.49MB 9 ( 7%) - 0.0% ± 0.0%
Before this commit, the WTF-16 command line string would be converted to WTF-8 in `init`, and then a second buffer of the WTF-8 size + 1 would be allocated to store the parsed arguments. The converted WTF-8 command line would then be parsed and the relevant bytes would be copied into the argument buffer before being returned.
After this commit, only the WTF-8 size of the WTF-16 string is calculated (without conversion) which is then used to allocate the buffer for the parsed arguments. Parsing is then done on the WTF-16 slice directly, with the arguments being converted to WTF-8 on-the-fly.
This has a few (minor) benefits:
- Cuts the amount of memory allocated by ArgIteratorWindows in half (or better)
- Makes the total amount of memory allocated by ArgIteratorWindows predictable, since, before, the upfront `wtf16LeToWtf8Alloc` call could end up allocating more-memory-than-necessary temporarily due to its internal use of an ArrayList. Now, the amount of memory allocated is always exactly `calcWtf8Len(cmd_line) + 1`.
Deprecated aliases that are now compile errors:
- `std.fs.MAX_PATH_BYTES` (renamed to `std.fs.max_path_bytes`)
- `std.mem.tokenize` (split into `tokenizeAny`, `tokenizeSequence`, `tokenizeScalar`)
- `std.mem.split` (split into `splitSequence`, `splitAny`, `splitScalar`)
- `std.mem.splitBackwards` (split into `splitBackwardsSequence`, `splitBackwardsAny`, `splitBackwardsScalar`)
- `std.unicode`
+ `utf16leToUtf8Alloc`, `utf16leToUtf8AllocZ`, `utf16leToUtf8`, `fmtUtf16le` (all renamed to have capitalized `Le`)
+ `utf8ToUtf16LeWithNull` (renamed to `utf8ToUtf16LeAllocZ`)
- `std.zig.CrossTarget` (moved to `std.Target.Query`)
Deprecated `lib/std/std.zig` decls were deleted instead of made a `@compileError` because the `refAllDecls` in the test block would trigger the `@compileError`. The deleted top-level `std` namespaces are:
- `std.rand` (renamed to `std.Random`)
- `std.TailQueue` (renamed to `std.DoublyLinkedList`)
- `std.ChildProcess` (renamed/moved to `std.process.Child`)
This is not exhaustive. Deprecated aliases that I didn't touch:
+ `std.io.*`
+ `std.Build.*`
+ `std.builtin.Mode`
+ `std.zig.c_translation.CIntLiteralRadix`
+ anything in `src/`
This makes it so that any other threads which are writing to stderr have
a chance to finish before the process terminates. It also clears the
terminal in case any progress has been written to stderr, while still
accomplishing the goal of not waiting until the update thread exits.
On Windows, the command line arguments of a program are a single WTF-16 encoded string and it's up to the program to split it into an array of strings. In C/C++, the entry point of the C runtime takes care of splitting the command line and passing argc/argv to the main function.
https://github.com/ziglang/zig/pull/18309 updated ArgIteratorWindows to match the behavior of CommandLineToArgvW, but it turns out that CommandLineToArgvW's behavior does not match the behavior of the C runtime post-2008. In 2008, the C runtime argv splitting changed how it handles consecutive double quotes within a quoted argument (it's now considered an escaped quote, e.g. `"foo""bar"` post-2008 would get parsed into `foo"bar`), and the rules around argv[0] were also changed.
This commit makes ArgIteratorWindows match the behavior of the post-2008 C runtime, and adds a standalone test that verifies the behavior matches both the MSVC and MinGW argv splitting exactly in all cases (it checks that randomly generated command line strings get split the same way).
The motivation here is roughly the same as when the same change was made in Rust (https://github.com/rust-lang/rust/pull/87580), that is (paraphrased):
- Consistent behavior between Zig and modern C/C++ programs
- Allows users to escape double quotes in a way that can be more straightforward
Additionally, the suggested mitigation for BatBadBut (https://flatt.tech/research/posts/batbadbut-you-cant-securely-execute-commands-on-windows/) relies on the post-2008 argv splitting behavior for roundtripping of the arguments given to `cmd.exe`. Note: it's not necessary for the suggested mitigation to work, but it is necessary for the suggested escaping to be parsed back into the intended argv by ArgIteratorWindows after being run through a `.bat` file.