const std = @import("std"); const isNan = std.math.isNan; const isInf = std.math.isInf; const scalbn = std.math.scalbn; const ilogb = std.math.ilogb; const maxInt = std.math.maxInt; const minInt = std.math.minInt; const isFinite = std.math.isFinite; const copysign = std.math.copysign; const Complex = @import("mulc3.zig").Complex; /// Implementation based on Annex G of C17 Standard (N2176) pub inline fn divc3(comptime T: type, a: T, b: T, c_in: T, d_in: T) Complex(T) { var c = c_in; var d = d_in; // logbw used to prevent under/over-flow const logbw = ilogb(@max(@abs(c), @abs(d))); const logbw_finite = logbw != maxInt(i32) and logbw != minInt(i32); const ilogbw = if (logbw_finite) b: { c = scalbn(c, -logbw); d = scalbn(d, -logbw); break :b logbw; } else 0; const denom = c * c + d * d; const result = Complex(T){ .real = scalbn((a * c + b * d) / denom, -ilogbw), .imag = scalbn((b * c - a * d) / denom, -ilogbw), }; // Recover infinities and zeros that computed as NaN+iNaN; // the only cases are non-zero/zero, infinite/finite, and finite/infinite, ... if (isNan(result.real) and isNan(result.imag)) { const zero: T = 0.0; const one: T = 1.0; if ((denom == 0.0) and (!isNan(a) or !isNan(b))) { return .{ .real = copysign(std.math.inf(T), c) * a, .imag = copysign(std.math.inf(T), c) * b, }; } else if ((isInf(a) or isInf(b)) and isFinite(c) and isFinite(d)) { const boxed_a = copysign(if (isInf(a)) one else zero, a); const boxed_b = copysign(if (isInf(b)) one else zero, b); return .{ .real = std.math.inf(T) * (boxed_a * c - boxed_b * d), .imag = std.math.inf(T) * (boxed_b * c - boxed_a * d), }; } else if (logbw == maxInt(i32) and isFinite(a) and isFinite(b)) { const boxed_c = copysign(if (isInf(c)) one else zero, c); const boxed_d = copysign(if (isInf(d)) one else zero, d); return .{ .real = 0.0 * (a * boxed_c + b * boxed_d), .imag = 0.0 * (b * boxed_c - a * boxed_d), }; } } return result; }