//! Ported from musl, which is MIT licensed. //! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT //! //! https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtf.c //! https://git.musl-libc.org/cgit/musl/tree/src/math/sqrt.c //! https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtl.c const std = @import("std"); const builtin = @import("builtin"); const arch = builtin.cpu.arch; const math = std.math; const common = @import("common.zig"); pub const panic = common.panic; comptime { @export(&__sqrth, .{ .name = "__sqrth", .linkage = common.linkage, .visibility = common.visibility }); @export(&sqrtf, .{ .name = "sqrtf", .linkage = common.linkage, .visibility = common.visibility }); @export(&sqrt, .{ .name = "sqrt", .linkage = common.linkage, .visibility = common.visibility }); @export(&__sqrtx, .{ .name = "__sqrtx", .linkage = common.linkage, .visibility = common.visibility }); if (common.want_ppc_abi) { @export(&sqrtq, .{ .name = "sqrtf128", .linkage = common.linkage, .visibility = common.visibility }); } else if (common.want_sparc_abi) { @export(&_Qp_sqrt, .{ .name = "_Qp_sqrt", .linkage = common.linkage, .visibility = common.visibility }); } @export(&sqrtq, .{ .name = "sqrtq", .linkage = common.linkage, .visibility = common.visibility }); @export(&sqrtl, .{ .name = "sqrtl", .linkage = common.linkage, .visibility = common.visibility }); } pub fn __sqrth(x: f16) callconv(.c) f16 { var ix: u16 = @bitCast(x); var top = ix >> 10; // special case handling. if (top -% 0x01 >= 0x1F - 0x01) { @branchHint(.unlikely); // x < 0x1p-14 or inf or nan. if (ix & 0x7FFF == 0) return x; if (ix == 0x7C00) return x; if (ix > 0x7C00) return math.nan(f16); // x is subnormal, normalize it. ix = @bitCast(x * 0x1p10); top = (ix >> 10) -% 10; } // argument reduction: // x = 4^e m; with integer e, and m in [1, 4) // m: fixed point representation [2.14] // 2^e is the exponent part of the result. const even = (top & 1) != 0; const m = if (even) (ix << 4) & 0x7FFF else (ix << 5) | 0x8000; top = (top +% 0x0F) >> 1; // approximate r ~ 1/sqrt(m) and s ~ sqrt(m) when m in [1,4) // the fixed point representations are // m: 2.14 r: 0.16, s: 2.14, d: 2.14, u: 2.14, three: 2.14 const three: u16 = 0xC000; const i: usize = @intCast((ix >> 4) & 0x7F); const r = __rsqrt_tab[i]; // |r*sqrt(m) - 1| < 0x1p-8 var s = mul16(m, r); // |s/sqrt(m) - 1| < 0x1p-8 const d = mul16(s, r); const u = three - d; s = mul16(s, u); // repr: 3.13 // -0x1.20p-13 < s/sqrt(m) - 1 < 0x7Dp-16 s = (s - 1) >> 3; // repr: 6.10 // s < sqrt(m) < s + 0x1.24p-10 // compute nearest rounded result: // the nearest result to 10 bits is either s or s+0x1p-10, // we can decide by comparing (2^10 s + 0.5)^2 to 2^20 m. const d0 = (m << 6) -% s *% s; const d1 = s -% d0; const d2 = d1 +% s +% 1; s += d1 >> 15; s &= 0x03FF; s |= top << 10; const y: f16 = @bitCast(s); // handle rounding modes and inexact exception: // only (s+1)^2 == 2^6 m case is exact otherwise // add a tiny value to cause the fenv effects. if (d2 != 0) { @branchHint(.likely); var tiny: u16 = 0x0001; tiny |= (d1 ^ d2) & 0x8000; const t: f16 = @bitCast(tiny); return y + t; } return y; } pub fn sqrtf(x: f32) callconv(.c) f32 { var ix: u32 = @bitCast(x); var top = ix >> 23; // special case handling. if (top -% 0x01 >= 0xFF - 0x01) { @branchHint(.unlikely); // x < 0x1p-126 or inf or nan. if (ix & 0x7FFF_FFFF == 0) return x; if (ix == 0x7F80_0000) return x; if (ix > 0x7F80_0000) return math.nan(f32); // x is subnormal, normalize it. ix = @bitCast(x * 0x1p23); top = (ix >> 23) -% 23; } // argument reduction: // x = 4^e m; with integer e, and m in [1, 4) // m: fixed point representation [2.30] // 2^e is the exponent part of the result. const even = (top & 1) != 0; const m = if (even) (ix << 7) & 0x7FFF_FFFF else (ix << 8) | 0x8000_0000; top = (top +% 0x7F) >> 1; // approximate r ~ 1/sqrt(m) and s ~ sqrt(m) when m in [1,4) // the fixed point representations are // m: 2.30 r: 0.32, s: 2.30, d: 2.30, u: 2.30, three: 2.30 const three: u32 = 0xC000_0000; var i: usize = @intCast((ix >> 17) & 0x3F); if (even) i += 64; var r = @as(u32, @intCast(__rsqrt_tab[i])) << 16; // |r*sqrt(m) - 1| < 0x1p-8 var s = mul32(m, r); // |s/sqrt(m) - 1| < 0x1p-8 var d = mul32(s, r); var u = three - d; r = mul32(r, u) << 1; // |r*sqrt(m) - 1| < 0x1.7bp-16 s = mul32(s, u) << 1; // |s/sqrt(m) - 1| < 0x1.7bp-16 d = mul32(s, r); u = three - d; s = mul32(s, u); // repr: 3.29 // -0x1.03p-28 < s/sqrt(m) - 1 < 0x1.fp-31 s = (s - 1) >> 6; // repr: 9.23 // s < sqrt(m) < s + 0x1.08p-23 // compute nearest rounded result: // the nearest result to 23 bits is either s or s+0x1p-23, // we can decide by comparing (2^23 s + 0.5)^2 to 2^46 m. const d0 = (m << 16) -% s *% s; const d1 = s -% d0; const d2 = d1 +% s +% 1; s += d1 >> 31; s &= 0x007F_FFFF; s |= top << 23; const y: f32 = @bitCast(s); // handle rounding modes and inexact exception: // only (s+1)^2 == 2^16 m case is exact otherwise // add a tiny value to cause the fenv effects. if (d2 != 0) { @branchHint(.likely); var tiny: u32 = 0x0100_0000; tiny |= (d1 ^ d2) & 0x8000_0000; const t: f32 = @bitCast(tiny); return y + t; } return y; } pub fn sqrt(x: f64) callconv(.c) f64 { var ix: u64 = @bitCast(x); var top = ix >> 52; // special case handling. if (top -% 0x001 >= 0x7FF - 0x001) { @branchHint(.unlikely); // x < 0x1p-1022 or inf or nan. if (ix & 0x7FFF_FFFF_FFFF_FFFF == 0) return x; if (ix == 0x7FF0_0000_0000_0000) return x; if (ix > 0x7FF0_0000_0000_0000) return math.nan(f64); // x is subnormal, normalize it. ix = @bitCast(x * 0x1p52); top = (ix >> 52) -% 52; } // argument reduction: // x = 4^e m; with integer e, and m in [1, 4) // m: fixed point representation [2.62] // 2^e is the exponent part of the result. const even = (top & 1) != 0; const m = if (even) (ix << 10) & 0x7FFF_FFFF_FFFF_FFFF else (ix << 11) | 0x8000_0000_0000_0000; top = (top +% 0x3FF) >> 1; // approximate r ~ 1/sqrt(m) and s ~ sqrt(m) when m in [1,4) // // initial estimate: // 7bit table lookup (1bit exponent and 6bit significand). // // iterative approximation: // using 2 goldschmidt iterations with 32bit int arithmetics // and a final iteration with 64bit int arithmetics. // // details: // // the relative error (e = r0 sqrt(m)-1) of a linear estimate // (r0 = a m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best, // a table lookup is faster and needs one less iteration // 6 bit lookup table (128b) gives |e| < 0x1.f9p-8 // 7 bit lookup table (256b) gives |e| < 0x1.fdp-9 // for single and double prec 6bit is enough but for quad // prec 7bit is needed (or modified iterations). to avoid // one more iteration >=13bit table would be needed (16k). // // a newton-raphson iteration for r is // w = r*r // u = 3 - m*w // r = r*u/2 // can use a goldschmidt iteration for s at the end or // s = m*r // // first goldschmidt iteration is // s = m*r // u = 3 - s*r // r = r*u/2 // s = s*u/2 // next goldschmidt iteration is // u = 3 - s*r // r = r*u/2 // s = s*u/2 // and at the end r is not computed only s. // // they use the same amount of operations and converge at the // same quadratic rate, i.e. if // r1 sqrt(m) - 1 = e, then // r2 sqrt(m) - 1 = -3/2 e^2 - 1/2 e^3 // the advantage of goldschmidt is that the mul for s and r // are independent (computed in parallel), however it is not // "self synchronizing": it only uses the input m in the // first iteration so rounding errors accumulate. at the end // or when switching to larger precision arithmetics rounding // errors dominate so the first iteration should be used. // // the fixed point representations are // m: 2.30 r: 0.32, s: 2.30, d: 2.30, u: 2.30, three: 2.30 // and after switching to 64 bit // m: 2.62 r: 0.64, s: 2.62, d: 2.62, u: 2.62, three: 2.62 const three: struct { u32, u64 } = .{ 0xC000_0000, 0xC000_0000_0000_0000, }; var r: struct { u32, u64 } = undefined; var s: struct { u32, u64 } = undefined; var d: struct { u32, u64 } = undefined; var u: struct { u32, u64 } = undefined; const i: usize = @intCast((ix >> 46) & 0x7F); r[0] = @intCast(__rsqrt_tab[i]); r[0] <<= 16; // |r sqrt(m) - 1| < 0x1.fdp-9 s[0] = mul32(@intCast(m >> 32), r[0]); // |s/sqrt(m) - 1| < 0x1.fdp-9 d[0] = mul32(s[0], r[0]); u[0] = three[0] - d[0]; r[0] = mul32(r[0], u[0]) << 1; // |r sqrt(m) - 1| < 0x1.7bp-16 s[0] = mul32(s[0], u[0]) << 1; // |s/sqrt(m) - 1| < 0x1.7bp-16 d[0] = mul32(s[0], r[0]); u[0] = three[0] - d[0]; r[0] = mul32(r[0], u[0]) << 1; // |r sqrt(m) - 1| < 0x1.3704p-29 (measured worst-case) r[1] = @intCast(r[0]); r[1] <<= 32; s[1] = mul64(m, r[1]); d[1] = mul64(s[1], r[1]); u[1] = three[1] - d[1]; s[1] = mul64(s[1], u[1]); // repr: 3.61 // -0x1p-57 < s - sqrt(m) < 0x1.8001p-61 s[1] = (s[1] - 2) >> 9; // repr: 12.52 // -0x1.09p-52 < s - sqrt(m) < -0x1.fffcp-63 // s < sqrt(m) < s + 0x1.09p-52 // compute nearest rounded result: // the nearest result to 52 bits is either s or s+0x1p-52, // we can decide by comparing (2^52 s + 0.5)^2 to 2^104 m. const d0 = (m << 42) -% s[1] *% s[1]; const d1 = s[1] -% d0; const d2 = d1 +% s[1] +% 1; s[1] += d1 >> 63; s[1] &= 0x000F_FFFF_FFFF_FFFF; s[1] |= top << 52; const y: f64 = @bitCast(s[1]); // handle rounding modes and inexact exception: // only (s+1)^2 == 2^42 m case is exact otherwise // add a tiny value to cause the fenv effects. if (d2 != 0) { @branchHint(.likely); var tiny: u64 = 0x0010_0000_0000_0000; tiny |= (d1 ^ d2) & 0x8000_0000_0000_0000; const t: f64 = @bitCast(tiny); return y + t; } return y; } pub fn __sqrtx(x: f80) callconv(.c) f80 { var ix: u80 = @bitCast(x); var top = ix >> 64; // special case handling. if (top -% 0x0001 >= 0x7FFF - 0x0001) { @branchHint(.unlikely); // x < 0x1p-16382 or inf or nan. if (ix & 0x7FFF_FFFF_FFFF_FFFF_FFFF == 0) return x; if (ix == 0x7FFF_8000_0000_0000_0000) return x; if (ix > 0x7FFF_8000_0000_0000_0000) return math.nan(f80); // x is subnormal, normalize it. ix = @bitCast(x * 0x1p63); top = (ix >> 64) -% 63; } // argument reduction: // x = 4^e m; with integer e, and m in [1, 4) // m: fixed point representation [2.78] // 2^e is the exponent part of the result. const even = (top & 1) != 0; const m = if (even) (ix << 15) & 0x7FFF_FFFF_FFFF_FFFF_FFFF else ix << 16; top = (top +% 0x3FFF) >> 1; // approximate r ~ 1/sqrt(m) and s ~ sqrt(m) when m in [1,4) // the fixed point representations are // m: 2.30 r: 0.32, s: 2.30, d: 2.30, u: 2.30, three: 2.30 // and after switching to 64 bit // m: 2.62 r: 0.64, s: 2.62, d: 2.62, u: 2.62, three: 2.62 // and after switching to 80 bit // m: 2.78 r: 0.80, s: 2.78, d: 2.78, u: 2.78, three: 2.78 const three: struct { u32, u64, u80 } = .{ 0xC000_0000, 0xC000_0000_0000_0000, 0xC000_0000_0000_0000_0000, }; var r: struct { u32, u64, u80 } = undefined; var s: struct { u32, u64, u80 } = undefined; var d: struct { u32, u64, u80 } = undefined; var u: struct { u32, u64, u80 } = undefined; var i: usize = @intCast((ix >> 57) & 0x3F); if (even) i += 64; r[0] = @intCast(__rsqrt_tab[i]); r[0] <<= 16; // |r sqrt(m) - 1| < 0x1p-8 s[0] = mul32(@intCast(m >> 48), r[0]); d[0] = mul32(s[0], r[0]); u[0] = three[0] - d[0]; r[0] = mul32(u[0], r[0]) << 1; // |r sqrt(m) - 1| < 0x1.7bp-16, switch to 64bit r[1] = @intCast(r[0]); r[1] <<= 32; s[1] = mul64(@intCast(m >> 16), r[1]); d[1] = mul64(s[1], r[1]); u[1] = three[1] - d[1]; r[1] = mul64(u[1], r[1]) << 1; // |r sqrt(m) - 1| < 0x1.a5p-31 s[1] = mul64(u[1], s[1]) << 1; d[1] = mul64(s[1], r[1]); u[1] = three[1] - d[1]; r[1] = mul64(u[1], r[1]) << 1; // |r sqrt(m) - 1| < 0x1.c001p-59, switch to 80bit r[2] = @intCast(r[1]); r[2] <<= 16; s[2] = mul80(m, r[2]); d[2] = mul80(s[2], r[2]); u[2] = three[2] - d[2]; s[2] = mul80(u[2], s[2]); // repr: 3.77 s[2] = (s[2] - 4) >> 14; // repr: 17.63 // s < sqrt(m) < s + 1 ULP + tiny // compute nearest rounded result: // the nearest result to 63 bits is either s or s+0x1p-63, // we can decide by comparing (2^63 s + 0.5)^2 to 2^126 m const d0 = (m << 48) -% mul80_tail(s[2], s[2]); const d1 = s[2] -% d0; const d2 = d1 +% s[2] +% 1; s[2] += d1 >> 79; s[2] &= 0x0000_7FFF_FFFF_FFFF_FFFF; s[2] |= 0x0000_8000_0000_0000_0000; s[2] |= top << 64; const y: f80 = @bitCast(s[2]); // handle rounding modes and inexact exception: // only (s+1)^2 == 2^48 m case is exact otherwise // add a tiny value to cause the fenv effects. if (d2 != 0) { @branchHint(.likely); var tiny: u80 = 0x0001_8000_0000_0000_0000; tiny |= (d1 ^ d2) & 0x8000_0000_0000_0000_0000; const t: f80 = @bitCast(tiny); return y + t; } return y; } pub fn sqrtq(x: f128) callconv(.c) f128 { var ix: u128 = @bitCast(x); var top = ix >> 112; // special case handling. if (top -% 0x0001 >= 0x7FFF - 0x0001) { @branchHint(.unlikely); // x < 0x1p-16382 or inf or nan. if (ix & 0x7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF == 0) return x; if (ix == 0x7FFF_0000_0000_0000_0000_0000_0000_0000) return x; if (ix > 0x7FFF_0000_0000_0000_0000_0000_0000_0000) return math.nan(f128); // x is subnormal, normalize it. ix = @bitCast(x * 0x1p112); top = (ix >> 112) -% 112; } // argument reduction: // x = 4^e m; with integer e, and m in [1, 4) // m: fixed point representation [2.126] // 2^e is the exponent part of the result. const even = (top & 1) != 0; const m = if (even) (ix << 14) & 0x7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF else (ix << 15) | 0x8000_0000_0000_0000_0000_0000_0000_0000; top = (top +% 0x3FFF) >> 1; // approximate r ~ 1/sqrt(m) and s ~ sqrt(m) when m in [1,4) // the fixed point representations are // m: 2.30 r: 0.32, s: 2.30, d: 2.30, u: 2.30, three: 2.30 // and after switching to 64 bit // m: 2.62 r: 0.64, s: 2.62, d: 2.62, u: 2.62, three: 2.62 // and after switching to 128 bit // m: 2.126 r: 0.128, s: 2.126, d: 2.126, u: 2.126, three: 2.126 const three: struct { u32, u64, u128 } = .{ 0xC000_0000, 0xC000_0000_0000_0000, 0xC000_0000_0000_0000_0000_0000_0000_0000, }; var r: struct { u32, u64, u128 } = undefined; var s: struct { u32, u64, u128 } = undefined; var d: struct { u32, u64, u128 } = undefined; var u: struct { u32, u64, u128 } = undefined; const i: usize = @intCast((ix >> 106) & 0x7F); r[0] = @intCast(__rsqrt_tab[i]); r[0] <<= 16; // |r sqrt(m) - 1| < 0x1p-8 s[0] = mul32(@intCast(m >> 96), r[0]); d[0] = mul32(s[0], r[0]); u[0] = three[0] - d[0]; r[0] = mul32(u[0], r[0]) << 1; // |r sqrt(m) - 1| < 0x1.7bp-16, switch to 64bit r[1] = @intCast(r[0]); r[1] <<= 32; s[1] = mul64(@intCast(m >> 64), r[1]); d[1] = mul64(s[1], r[1]); u[1] = three[1] - d[1]; r[1] = mul64(u[1], r[1]) << 1; // |r sqrt(m) - 1| < 0x1.a5p-31 s[1] = mul64(u[1], s[1]) << 1; d[1] = mul64(s[1], r[1]); u[1] = three[1] - d[1]; r[1] = mul64(u[1], r[1]) << 1; // |r sqrt(m) - 1| < 0x1.c001p-59, switch to 128bit r[2] = @intCast(r[1]); r[2] <<= 64; s[2] = mul128(m, r[2]); d[2] = mul128(s[2], r[2]); u[2] = three[2] - d[2]; s[2] = mul128(u[2], s[2]); // repr: 3.125 // -0x1p-116 < s - sqrt(m) < 0x3.8001p-125 s[2] = (s[2] - 4) >> 13; // repr: 16.122 // s < sqrt(m) < s + 1 ULP + tiny // compute nearest rounded result: // the nearest result to 122 bits is either s or s+0x1p-122, // we can decide by comparing (2^122 s + 0.5)^2 to 2^244 m const d0 = (m << 98) -% s[2] *% s[2]; const d1 = s[2] -% d0; const d2 = d1 +% s[2] +% 1; s[2] += d1 >> 127; s[2] &= 0x0000_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF; s[2] |= top << 112; const y: f128 = @bitCast(s[2]); // handle rounding modes and inexact exception: // only (s+1)^2 == 2^98 m case is exact otherwise // add a tiny value to cause the fenv effects. if (d2 != 0) { @branchHint(.likely); var tiny: u128 = 0x0001_0000_0000_0000_0000_0000_0000_0000; tiny |= (d1 ^ d2) & 0x8000_0000_0000_0000_0000_0000_0000_0000; const t: f128 = @bitCast(tiny); return y + t; } return y; } fn _Qp_sqrt(c: *f128, a: *f128) callconv(.c) void { c.* = sqrt(@floatCast(a.*)); } pub fn sqrtl(x: c_longdouble) callconv(.c) c_longdouble { switch (@typeInfo(c_longdouble).float.bits) { 16 => return __sqrth(x), 32 => return sqrtf(x), 64 => return sqrt(x), 80 => return __sqrtx(x), 128 => return sqrtq(x), else => @compileError("unreachable"), } } const __rsqrt_tab: [128]u16 = .{ 0xB451, 0xB2F0, 0xB196, 0xB044, 0xAEF9, 0xADB6, 0xAC79, 0xAB43, 0xAA14, 0xA8EB, 0xA7C8, 0xA6AA, 0xA592, 0xA480, 0xA373, 0xA26B, 0xA168, 0xA06A, 0x9F70, 0x9E7B, 0x9D8A, 0x9C9D, 0x9BB5, 0x9AD1, 0x99F0, 0x9913, 0x983A, 0x9765, 0x9693, 0x95C4, 0x94F8, 0x9430, 0x936B, 0x92A9, 0x91EA, 0x912E, 0x9075, 0x8FBE, 0x8F0A, 0x8E59, 0x8DAA, 0x8CFE, 0x8C54, 0x8BAC, 0x8B07, 0x8A64, 0x89C4, 0x8925, 0x8889, 0x87EE, 0x8756, 0x86C0, 0x862B, 0x8599, 0x8508, 0x8479, 0x83EC, 0x8361, 0x82D8, 0x8250, 0x81C9, 0x8145, 0x80C2, 0x8040, 0xFF02, 0xFD0E, 0xFB25, 0xF947, 0xF773, 0xF5AA, 0xF3EA, 0xF234, 0xF087, 0xEEE3, 0xED47, 0xEBB3, 0xEA27, 0xE8A3, 0xE727, 0xE5B2, 0xE443, 0xE2DC, 0xE17A, 0xE020, 0xDECB, 0xDD7D, 0xDC34, 0xDAF1, 0xD9B3, 0xD87B, 0xD748, 0xD61A, 0xD4F1, 0xD3CD, 0xD2AD, 0xD192, 0xD07B, 0xCF69, 0xCE5B, 0xCD51, 0xCC4A, 0xCB48, 0xCA4A, 0xC94F, 0xC858, 0xC764, 0xC674, 0xC587, 0xC49D, 0xC3B7, 0xC2D4, 0xC1F4, 0xC116, 0xC03C, 0xBF65, 0xBE90, 0xBDBE, 0xBCEF, 0xBC23, 0xBB59, 0xBA91, 0xB9CC, 0xB90A, 0xB84A, 0xB78C, 0xB6D0, 0xB617, 0xB560, }; inline fn mul16(a: u16, b: u16) u16 { return @intCast(@as(u32, @intCast(a)) * @as(u32, @intCast(b)) >> 16); } inline fn mul32(a: u32, b: u32) u32 { return @intCast(@as(u64, @intCast(a)) * @as(u64, @intCast(b)) >> 32); } inline fn mul64(a: u64, b: u64) u64 { return @intCast(@as(u128, @intCast(a)) * @as(u128, @intCast(b)) >> 64); } inline fn mul80(a: u80, b: u80) u80 { const ahi = a >> 40; const alo = a & 0xFF_FFFF_FFFF; const bhi = b >> 40; const blo = b & 0xFF_FFFF_FFFF; return ahi * bhi + (ahi * blo >> 40) + (alo * bhi >> 40); } inline fn mul128(a: u128, b: u128) u128 { const ahi = a >> 64; const alo = a & 0xFFFF_FFFF_FFFF_FFFF; const bhi = b >> 64; const blo = b & 0xFFFF_FFFF_FFFF_FFFF; return ahi * bhi + (ahi * blo >> 64) + (alo * bhi >> 64); } inline fn mul80_tail(a: u80, b: u80) u80 { const ahi = a >> 40; const alo = a & 0xFF_FFFF_FFFF; const bhi = b >> 40; const blo = b & 0xFF_FFFF_FFFF; return alo * blo +% ((ahi * blo) << 40) +% ((alo * bhi) << 40); } test "__sqrth" { // sqrt(±0) is ±0 try std.testing.expectEqual(__sqrth(0x0.0p0), 0x0.0p0); try std.testing.expectEqual(__sqrth(-0x0.0p0), -0x0.0p0); // sqrt(+max) is finite try std.testing.expectEqual(__sqrth(0x1.FFCp15), 0x1.FFCp7); // sqrt(4)=2 try std.testing.expectEqual(__sqrth(0x1p2), 0x1p1); // sqrt(x) for x=1, 1±ulp try std.testing.expectEqual(__sqrth(0x1p0), 0x1p0); try std.testing.expectEqual(__sqrth(0x1.004p0), 0x1p0); try std.testing.expectEqual(__sqrth(0x1.FF8p-1), 0x1.FFCp-1); // sqrt(+min) is non-zero try std.testing.expectEqual(__sqrth(0x1p-14), 0x1p-7); // sqrt(min subnormal) is non-zero try std.testing.expectEqual(__sqrth(0x0.004p-14), 0x1p-12); // sqrt(inf) is inf try std.testing.expect(math.isInf(__sqrth(math.inf(f16)))); // sqrt(nan) is nan try std.testing.expect(math.isNan(__sqrth(math.nan(f16)))); // sqrt(-ve) is nan try std.testing.expect(math.isNan(__sqrth(-0x1p-14))); try std.testing.expect(math.isNan(__sqrth(-0x1p+0))); try std.testing.expect(math.isNan(__sqrth(-math.inf(f16)))); // random arguments try std.testing.expectEqual(__sqrth(0x1.1p14), 0x1.08p7); try std.testing.expectEqual(__sqrth(0x1.C9p-12), 0x1.56p-6); try std.testing.expectEqual(__sqrth(0x1.CE8p-7), 0x1.E68p-4); try std.testing.expectEqual(__sqrth(0x1.134p-7), 0x1.778p-4); try std.testing.expectEqual(__sqrth(0x1.E9Cp-10), 0x1.62p-5); try std.testing.expectEqual(__sqrth(0x1.3Dp9), 0x1.92Cp4); try std.testing.expectEqual(__sqrth(0x1.AA4p8), 0x1.4A4p4); try std.testing.expectEqual(__sqrth(0x1.8A8p4), 0x1.3DCp2); try std.testing.expectEqual(__sqrth(0x1.8Fp-7), 0x1.C4p-4); try std.testing.expectEqual(__sqrth(0x1.584p-11), 0x1.A3Cp-6); } test "sqrtf" { // sqrt(±0) is ±0 try std.testing.expectEqual(sqrtf(0x0.0p0), 0x0.0p0); try std.testing.expectEqual(sqrtf(-0x0.0p0), -0x0.0p0); // sqrt(+max) is finite try std.testing.expectEqual(sqrtf(0x1.FFFFFEp127), 0x1.FFFFFEp63); // sqrt(4)=2 try std.testing.expectEqual(sqrtf(0x1p2), 0x1p1); // sqrt(x) for x=1, 1±ulp try std.testing.expectEqual(sqrtf(0x1p0), 0x1p0); try std.testing.expectEqual(sqrtf(0x1.000002p0), 0x1p0); try std.testing.expectEqual(sqrtf(0x1.FFFFFEp-1), 0x1.FFFFFEp-1); // sqrt(+min) is non-zero try std.testing.expectEqual(sqrtf(0x1p-126), 0x1p-63); // sqrt(min subnormal) is non-zero try std.testing.expectEqual(sqrtf(0x0.000002p-126), 0x1.6a09e6p-75); // sqrt(inf) is inf try std.testing.expect(math.isInf(sqrtf(math.inf(f32)))); // sqrt(nan) is nan try std.testing.expect(math.isNan(sqrtf(math.nan(f32)))); // sqrt(-ve) is nan try std.testing.expect(math.isNan(sqrtf(-0x1p-149))); try std.testing.expect(math.isNan(sqrtf(-0x1p0))); try std.testing.expect(math.isNan(sqrtf(-math.inf(f32)))); // random arguments try std.testing.expectEqual(sqrtf(0x1.4DD57Ep77), 0x1.9D6DA8p38); try std.testing.expectEqual(sqrtf(0x1.871848p102), 0x1.3C6AFAp51); try std.testing.expectEqual(sqrtf(0x1.A1D748p-112), 0x1.470EFCp-56); try std.testing.expectEqual(sqrtf(0x1.E626C2p18), 0x1.60C80Ep9); try std.testing.expectEqual(sqrtf(0x1.E80E66p-29), 0x1.F3E282p-15); try std.testing.expectEqual(sqrtf(0x1.B47204p89), 0x1.D8B732p44); try std.testing.expectEqual(sqrtf(0x1.77F45p15), 0x1.B6BC3Ap7); try std.testing.expectEqual(sqrtf(0x1.AD5F5p-48), 0x1.4B8A72p-24); try std.testing.expectEqual(sqrtf(0x1.91A39p-76), 0x1.40A7A8p-38); try std.testing.expectEqual(sqrtf(0x1.DAE088p79), 0x1.ED16DCp39); } test "sqrt" { // sqrt(±0) is ±0 try std.testing.expectEqual(sqrt(0x0.0p0), 0x0.0p0); try std.testing.expectEqual(sqrt(-0x0.0p0), -0x0.0p0); // sqrt(+max) is finite try std.testing.expectEqual(sqrt(math.floatMax(f64)), 0x1.FFFFFFFFFFFFFp511); // sqrt(4)=2 try std.testing.expectEqual(sqrt(0x1p2), 0x1p1); // sqrt(x) for x=1, 1±ulp try std.testing.expectEqual(sqrt(0x1p0), 0x1p0); try std.testing.expectEqual(sqrt(0x1p0 + math.floatEps(f64)), 0x1p0); try std.testing.expectEqual(sqrt(0x1p0 - math.floatEps(f64)), 0x1.FFFFFFFFFFFFFp-1); // sqrt(+min) is non-zero try std.testing.expectEqual(sqrt(math.floatMin(f64)), 0x1p-511); // sqrt(min subnormal) is non-zero try std.testing.expectEqual(sqrt(math.floatTrueMin(f64)), 0x1p-537); // sqrt(inf) is inf try std.testing.expect(math.isInf(sqrt(math.inf(f64)))); // sqrt(nan) is nan try std.testing.expect(math.isNan(sqrt(math.nan(f64)))); // sqrt(-ve) is nan try std.testing.expect(math.isNan(sqrt(-0x1p-1074))); try std.testing.expect(math.isNan(sqrt(-0x1p0))); try std.testing.expect(math.isNan(sqrt(-math.inf(f64)))); // random arguments try std.testing.expectEqual(sqrt(0x1.27D3510D4789Bp471), 0x1.852E97E58CFB7p235); try std.testing.expectEqual(sqrt(0x1.8C4FCD5A07846p791), 0x1.C27504E56D938p395); try std.testing.expectEqual(sqrt(0x1.B1B69324F96E7p-137), 0x1.D73BD0414D8BFp-69); try std.testing.expectEqual(sqrt(0x1.1CBD179A811FEp278), 0x1.0DFCB9A114A61p139); try std.testing.expectEqual(sqrt(0x1.1D0C7EFB04A56p917), 0x1.7E0708A25DDCDp458); try std.testing.expectEqual(sqrt(0x1.21B355DA8C94Bp-249), 0x1.8121CBE2608E3p-125); try std.testing.expectEqual(sqrt(0x1.63024D4C5E987p487), 0x1.AA56AEA589DCDp243); try std.testing.expectEqual(sqrt(0x1.45AC3BE941F6Ep339), 0x1.9857F3F453E2Dp169); try std.testing.expectEqual(sqrt(0x1.3B719C733AA24p267), 0x1.91E12E3AC8F71p133); try std.testing.expectEqual(sqrt(0x1.0B150433A2275p357), 0x1.71CAB87F8277Cp178); } test "__sqrtx" { // sqrt(±0) is ±0 try std.testing.expectEqual(__sqrtx(0x0.0p0), 0x0.0p0); try std.testing.expectEqual(__sqrtx(-0x0.0p0), -0x0.0p0); // sqrt(+max) is finite try std.testing.expectEqual(__sqrtx(math.floatMax(f80)), 0x1.FFFFFFFFFFFFFFFEp8191); // sqrt(4)=2 try std.testing.expectEqual(__sqrtx(0x1p2), 0x1p1); // sqrt(x) for x=1, 1±ulp try std.testing.expectEqual(__sqrtx(0x1p0), 0x1p0); try std.testing.expectEqual(__sqrtx(0x1p0 + math.floatEps(f80)), 0x1p0); try std.testing.expectEqual(__sqrtx(0x1p0 - math.floatEps(f80)), 0x1.FFFFFFFFFFFFFFFEp-1); // sqrt(+min) is non-zero try std.testing.expectEqual(__sqrtx(math.floatMin(f80)), 0x1p-8191); // sqrt(min subnormal) is non-zero try std.testing.expectEqual(__sqrtx(math.floatTrueMin(f80)), 0x1.6A09E667F3BCC908p-8223); // sqrt(inf) is inf try std.testing.expect(math.isInf(__sqrtx(math.inf(f80)))); // sqrt(nan) is nan try std.testing.expect(math.isNan(__sqrtx(math.nan(f80)))); // sqrt(-ve) is nan try std.testing.expect(math.isNan(__sqrtx(-0x1p-16442))); try std.testing.expect(math.isNan(__sqrtx(-0x1p0))); try std.testing.expect(math.isNan(__sqrtx(-math.inf(f80)))); // random arguments try std.testing.expectEqual(__sqrtx(0x1.087F3953486918A4p15482), 0x1.0436BBE03D02F32p7741); try std.testing.expectEqual(__sqrtx(0x1.530CF9E2AE84D8Fp-6330), 0x1.269CFEF51933BE58p-3165); try std.testing.expectEqual(__sqrtx(0x1.3F971515EADD574Ap5713), 0x1.9483232AB780B006p2856); try std.testing.expectEqual(__sqrtx(0x1.4CC0DC7379222954p864), 0x1.23DD4D0A4758C2Cp432); try std.testing.expectEqual(__sqrtx(0x1.920E5649559A839Ep-3181), 0x1.C5B5BC0F98DD83D2p-1591); try std.testing.expectEqual(__sqrtx(0x1.2E59726F87CD1746p-629), 0x1.8973327E95CB350Cp-315); try std.testing.expectEqual(__sqrtx(0x1.D3A16391F57B4D64p-9034), 0x1.59FF08B7DEEF5DB2p-4517); try std.testing.expectEqual(__sqrtx(0x1.E7053D8DAA49BCEEp-11411), 0x1.F35AA3EA5E18E344p-5706); try std.testing.expectEqual(__sqrtx(0x1.797ED0B05DD4A984p7521), 0x1.B7A22E40C6A7867Ap3760); try std.testing.expectEqual(__sqrtx(0x1.FC50806445C7226Ap15371), 0x1.FE2766142653F5BEp7685); } test "sqrtq" { // sqrt(±0) is ±0 try std.testing.expectEqual(sqrtq(0x0.0p0), 0x0.0p0); try std.testing.expectEqual(sqrtq(-0x0.0p0), -0x0.0p0); // sqrt(+max) is finite try std.testing.expectEqual(sqrtq(math.floatMax(f128)), 0x1.FFFFFFFFFFFFFFFFFFFFFFFFFFFFp8191); // sqrt(4)=2 try std.testing.expectEqual(sqrtq(0x1p2), 0x1p1); // sqrt(x) for x=1, 1±ulp try std.testing.expectEqual(sqrtq(0x1p0), 0x1p0); try std.testing.expectEqual(sqrtq(0x1p0 + math.floatEps(f128)), 0x1p0); try std.testing.expectEqual(sqrtq(0x1p0 - math.floatEps(f128)), 0x1.FFFFFFFFFFFFFFFFFFFFFFFFFFFFp-1); // sqrt(+min) is non-zero try std.testing.expectEqual(sqrtq(math.floatMin(f128)), 0x1p-8191); // sqrt(min subnormal) is non-zero try std.testing.expectEqual(sqrtq(math.floatTrueMin(f128)), 0x1p-8247); // sqrt(inf) is inf try std.testing.expect(math.isInf(sqrtq(math.inf(f128)))); // sqrt(nan) is nan try std.testing.expect(math.isNan(sqrtq(math.nan(f128)))); // sqrt(-ve) is nan try std.testing.expect(math.isNan(sqrtq(-0x1p-16442))); try std.testing.expect(math.isNan(sqrtq(-0x1p0))); try std.testing.expect(math.isNan(sqrtq(-math.inf(f128)))); // random arguments try std.testing.expectEqual(sqrtq(0x1.B6942D29A331751600C9F3AF7E5Fp3363), 0x1.D9DE9AFEF0F2D25586A50CA39D4Dp1681); try std.testing.expectEqual(sqrtq(0x1.5E65C405F84D471A8070ADD7A42Dp11765), 0x1.A78F7F9452B4D9EC2403C81D9D42p5882); try std.testing.expectEqual(sqrtq(0x1.B42334D68F8016D8AE6F5E22B044p-5624), 0x1.4E247A7F2FF2A325E9377BB09C8p-2812); try std.testing.expectEqual(sqrtq(0x1.E61715047F80F2E0B9382B38E06Bp10062), 0x1.60C25D9DFDC0116B78EF5AFDE0E9p5031); try std.testing.expectEqual(sqrtq(0x1.2ED0B53B494CB55A7B04E653D40Ep-1026), 0x1.166CE78D658D2453D700B04C5748p-513); try std.testing.expectEqual(sqrtq(0x1.1BA756B9790E78A4E6F0B083AA89p1835), 0x1.7D1767EA3303DB7A46940033988p917); try std.testing.expectEqual(sqrtq(0x1.5B6C574319C1120335C8E1609704p4512), 0x1.2A3A8A415BB1648C548FBA2A4182p2256); try std.testing.expectEqual(sqrtq(0x1.FF91E8CDEE1552A2B74E77B602Ep14953), 0x1.FFC8F171267D4FE75CBE7AB4D851p7476); try std.testing.expectEqual(sqrtq(0x1.9B1837CFC629A1B6B1BB97099E7Dp2892), 0x1.4468511B909EAF8641BD59105A6Bp1446); try std.testing.expectEqual(sqrtq(0x1.0E2115475E64A92340914E7F7B37p-13951), 0x1.73E536F82F414134012F55BA5368p-6976); }