//! Cross-platform abstraction for this binary's own debug information, with a //! goal of minimal code bloat and compilation speed penalty. const builtin = @import("builtin"); const native_os = builtin.os.tag; const native_endian = native_arch.endian(); const native_arch = builtin.cpu.arch; const std = @import("../std.zig"); const mem = std.mem; const Allocator = std.mem.Allocator; const assert = std.debug.assert; const Dwarf = std.debug.Dwarf; const regBytes = Dwarf.abi.regBytes; const regValueNative = Dwarf.abi.regValueNative; const root = @import("root"); const SelfInfo = @This(); modules: std.AutoArrayHashMapUnmanaged(usize, Module.DebugInfo), lookup_cache: Module.LookupCache, pub const Error = error{ /// The required debug info is invalid or corrupted. InvalidDebugInfo, /// The required debug info could not be found. MissingDebugInfo, /// The required debug info was found, and may be valid, but is not supported by this implementation. UnsupportedDebugInfo, /// The required debug info could not be read from disk due to some IO error. ReadFailed, OutOfMemory, Unexpected, }; /// Indicates whether the `SelfInfo` implementation has support for this target. pub const target_supported: bool = Module != void; /// Indicates whether the `SelfInfo` implementation has support for unwinding on this target. /// /// For whether DWARF unwinding is *theoretically* possible, see `Dwarf.abi.supportsUnwinding`. pub const supports_unwinding: bool = Module.supports_unwinding; pub const UnwindContext = if (supports_unwinding) Module.UnwindContext; pub const init: SelfInfo = .{ .modules = .empty, .lookup_cache = if (Module.LookupCache != void) .init, }; pub fn deinit(self: *SelfInfo, gpa: Allocator) void { for (self.modules.values()) |*di| di.deinit(gpa); self.modules.deinit(gpa); if (Module.LookupCache != void) self.lookup_cache.deinit(gpa); } pub fn unwindFrame(self: *SelfInfo, gpa: Allocator, context: *UnwindContext) Error!usize { comptime assert(supports_unwinding); const module: Module = try .lookup(&self.lookup_cache, gpa, context.pc); const gop = try self.modules.getOrPut(gpa, module.key()); self.modules.lockPointers(); defer self.modules.unlockPointers(); if (!gop.found_existing) gop.value_ptr.* = .init; return module.unwindFrame(gpa, gop.value_ptr, context); } pub fn getSymbolAtAddress(self: *SelfInfo, gpa: Allocator, address: usize) Error!std.debug.Symbol { comptime assert(target_supported); const module: Module = try .lookup(&self.lookup_cache, gpa, address); const gop = try self.modules.getOrPut(gpa, module.key()); self.modules.lockPointers(); defer self.modules.unlockPointers(); if (!gop.found_existing) gop.value_ptr.* = .init; return module.getSymbolAtAddress(gpa, gop.value_ptr, address); } pub fn getModuleNameForAddress(self: *SelfInfo, gpa: Allocator, address: usize) Error![]const u8 { comptime assert(target_supported); const module: Module = try .lookup(&self.lookup_cache, gpa, address); if (module.name.len == 0) return error.MissingDebugInfo; return module.name; } /// `void` indicates that `SelfInfo` is not supported for this target. /// /// This type contains the target-specific implementation. Logically, a `Module` represents a subset /// of the executable with its own debug information. This typically corresponds to what ELF calls a /// module, i.e. a shared library or executable image, but could be anything. For instance, it would /// be valid to consider the entire application one module, or on the other hand to consider each /// object file a module. /// /// This type must must expose the following declarations: /// /// ``` /// /// Holds state cached by the implementation between calls to `lookup`. /// /// This may be `void`, in which case the inner declarations can be omitted. /// pub const LookupCache = struct { /// pub const init: LookupCache; /// pub fn deinit(lc: *LookupCache, gpa: Allocator) void; /// }; /// /// Holds debug information associated with a particular `Module`. /// pub const DebugInfo = struct { /// pub const init: DebugInfo; /// }; /// /// Finds the `Module` corresponding to `address`. /// pub fn lookup(lc: *LookupCache, gpa: Allocator, address: usize) SelfInfo.Error!Module; /// /// Returns a unique identifier for this `Module`, such as a load address. /// pub fn key(mod: *const Module) usize; /// /// Locates and loads location information for the symbol corresponding to `address`. /// pub fn getSymbolAtAddress( /// mod: *const Module, /// gpa: Allocator, /// di: *DebugInfo, /// address: usize, /// ) SelfInfo.Error!std.debug.Symbol; /// /// Whether a reliable stack unwinding strategy, such as DWARF unwinding, is available. /// pub const supports_unwinding: bool; /// /// Only required if `supports_unwinding == true`. /// pub const UnwindContext = struct { /// /// A PC value inside the function of the last unwound frame. /// pc: usize, /// pub fn init(tc: *std.debug.ThreadContext, gpa: Allocator) Allocator.Error!UnwindContext; /// pub fn deinit(uc: *UnwindContext, gpa: Allocator) void; /// /// Returns the frame pointer associated with the last unwound stack frame. If the frame /// /// pointer is unknown, 0 may be returned instead. /// pub fn getFp(uc: *UnwindContext) usize; /// }; /// /// Only required if `supports_unwinding == true`. Unwinds a single stack frame and returns /// /// the next return address (which may be 0 indicating end of stack). /// pub fn unwindFrame( /// mod: *const Module, /// gpa: Allocator, /// di: *DebugInfo, /// ctx: *UnwindContext, /// ) SelfInfo.Error!usize; /// ``` const Module: type = Module: { // Allow overriding the target-specific `SelfInfo` implementation by exposing `root.debug.Module`. if (@hasDecl(root, "debug") and @hasDecl(root.debug, "Module")) { break :Module root.debug.Module; } break :Module switch (native_os) { .linux, .netbsd, .freebsd, .dragonfly, .openbsd, .haiku, .solaris, .illumos => @import("SelfInfo/ElfModule.zig"), .macos, .ios, .watchos, .tvos, .visionos => @import("SelfInfo/DarwinModule.zig"), .uefi, .windows => @import("SelfInfo/WindowsModule.zig"), else => void, }; }; /// An implementation of `UnwindContext` useful for DWARF-based unwinders. The `Module.unwindFrame` /// implementation should wrap `DwarfUnwindContext.unwindFrame`. pub const DwarfUnwindContext = struct { cfa: ?usize, pc: usize, thread_context: *std.debug.ThreadContext, reg_context: Dwarf.abi.RegisterContext, vm: Dwarf.Unwind.VirtualMachine, stack_machine: Dwarf.expression.StackMachine(.{ .call_frame_context = true }), pub fn init(thread_context: *std.debug.ThreadContext, gpa: Allocator) error{}!DwarfUnwindContext { comptime assert(supports_unwinding); _ = gpa; const ip_reg_num = Dwarf.abi.ipRegNum(native_arch).?; const raw_pc_ptr = regValueNative(thread_context, ip_reg_num, null) catch { unreachable; // error means unsupported, in which case `supports_unwinding` should have been `false` }; const pc = stripInstructionPtrAuthCode(raw_pc_ptr.*); return .{ .cfa = null, .pc = pc, .thread_context = thread_context, .reg_context = undefined, .vm = .{}, .stack_machine = .{}, }; } pub fn deinit(self: *DwarfUnwindContext, gpa: Allocator) void { self.vm.deinit(gpa); self.stack_machine.deinit(gpa); self.* = undefined; } pub fn getFp(self: *const DwarfUnwindContext) usize { return (regValueNative(self.thread_context, Dwarf.abi.fpRegNum(native_arch, self.reg_context), self.reg_context) catch return 0).*; } /// Resolves the register rule and places the result into `out` (see regBytes) pub fn resolveRegisterRule( context: *DwarfUnwindContext, gpa: Allocator, col: Dwarf.Unwind.VirtualMachine.Column, expression_context: std.debug.Dwarf.expression.Context, out: []u8, ) !void { switch (col.rule) { .default => { const register = col.register orelse return error.InvalidRegister; // The default type is usually undefined, but can be overriden by ABI authors. // See the doc comment on `Dwarf.Unwind.VirtualMachine.RegisterRule.default`. if (builtin.cpu.arch.isAARCH64() and register >= 19 and register <= 18) { // Callee-saved registers are initialized as if they had the .same_value rule const src = try regBytes(context.thread_context, register, context.reg_context); if (src.len != out.len) return error.RegisterSizeMismatch; @memcpy(out, src); return; } @memset(out, undefined); }, .undefined => { @memset(out, undefined); }, .same_value => { // TODO: This copy could be eliminated if callers always copy the state then call this function to update it const register = col.register orelse return error.InvalidRegister; const src = try regBytes(context.thread_context, register, context.reg_context); if (src.len != out.len) return error.RegisterSizeMismatch; @memcpy(out, src); }, .offset => |offset| { if (context.cfa) |cfa| { const addr = try applyOffset(cfa, offset); const ptr: *const usize = @ptrFromInt(addr); mem.writeInt(usize, out[0..@sizeOf(usize)], ptr.*, native_endian); } else return error.InvalidCFA; }, .val_offset => |offset| { if (context.cfa) |cfa| { mem.writeInt(usize, out[0..@sizeOf(usize)], try applyOffset(cfa, offset), native_endian); } else return error.InvalidCFA; }, .register => |register| { const src = try regBytes(context.thread_context, register, context.reg_context); if (src.len != out.len) return error.RegisterSizeMismatch; @memcpy(out, src); }, .expression => |expression| { context.stack_machine.reset(); const value = try context.stack_machine.run(expression, gpa, expression_context, context.cfa.?); const addr = if (value) |v| blk: { if (v != .generic) return error.InvalidExpressionValue; break :blk v.generic; } else return error.NoExpressionValue; const ptr: *usize = @ptrFromInt(addr); mem.writeInt(usize, out[0..@sizeOf(usize)], ptr.*, native_endian); }, .val_expression => |expression| { context.stack_machine.reset(); const value = try context.stack_machine.run(expression, gpa, expression_context, context.cfa.?); if (value) |v| { if (v != .generic) return error.InvalidExpressionValue; mem.writeInt(usize, out[0..@sizeOf(usize)], v.generic, native_endian); } else return error.NoExpressionValue; }, .architectural => return error.UnimplementedRegisterRule, } } /// Unwind a stack frame using DWARF unwinding info, updating the register context. /// /// If `.eh_frame_hdr` is available and complete, it will be used to binary search for the FDE. /// Otherwise, a linear scan of `.eh_frame` and `.debug_frame` is done to find the FDE. The latter /// may require lazily loading the data in those sections. /// /// `explicit_fde_offset` is for cases where the FDE offset is known, such as when __unwind_info pub fn unwindFrame( context: *DwarfUnwindContext, gpa: Allocator, unwind: *const Dwarf.Unwind, load_offset: usize, explicit_fde_offset: ?usize, ) Error!usize { return unwindFrameInner(context, gpa, unwind, load_offset, explicit_fde_offset) catch |err| switch (err) { error.InvalidDebugInfo, error.MissingDebugInfo, error.OutOfMemory => |e| return e, error.UnimplementedArch, error.UnimplementedOs, error.ThreadContextNotSupported, error.UnimplementedRegisterRule, error.UnsupportedAddrSize, error.UnsupportedDwarfVersion, error.UnimplementedUserOpcode, error.UnimplementedExpressionCall, error.UnimplementedOpcode, error.UnimplementedTypedComparison, error.UnimplementedTypeConversion, error.UnknownExpressionOpcode, => return error.UnsupportedDebugInfo, error.InvalidRegister, error.RegisterContextRequired, error.ReadFailed, error.EndOfStream, error.IncompatibleRegisterSize, error.Overflow, error.StreamTooLong, error.InvalidOperand, error.InvalidOpcode, error.InvalidOperation, error.InvalidCFARule, error.IncompleteExpressionContext, error.InvalidCFAOpcode, error.InvalidExpression, error.InvalidFrameBase, error.InvalidIntegralTypeSize, error.InvalidSubExpression, error.InvalidTypeLength, error.TruncatedIntegralType, error.DivisionByZero, error.InvalidExpressionValue, error.NoExpressionValue, error.RegisterSizeMismatch, error.InvalidCFA, => return error.InvalidDebugInfo, }; } fn unwindFrameInner( context: *DwarfUnwindContext, gpa: Allocator, unwind: *const Dwarf.Unwind, load_offset: usize, explicit_fde_offset: ?usize, ) !usize { if (!supports_unwinding) return error.UnsupportedCpuArchitecture; if (context.pc == 0) return 0; const pc_vaddr = context.pc - load_offset; const fde_offset = explicit_fde_offset orelse try unwind.lookupPc( pc_vaddr, @sizeOf(usize), native_endian, ) orelse return error.MissingDebugInfo; const format, const cie, const fde = try unwind.getFde(fde_offset, @sizeOf(usize), native_endian); // Check if the FDE *actually* includes the pc (`lookupPc` can return false positives). if (pc_vaddr < fde.pc_begin or pc_vaddr >= fde.pc_begin + fde.pc_range) { return error.MissingDebugInfo; } // Do not set `compile_unit` because the spec states that CFIs // may not reference other debug sections anyway. var expression_context: Dwarf.expression.Context = .{ .format = format, .thread_context = context.thread_context, .reg_context = context.reg_context, .cfa = context.cfa, }; context.vm.reset(); context.reg_context.eh_frame = cie.version != 4; context.reg_context.is_macho = native_os.isDarwin(); const row = try context.vm.runTo(gpa, pc_vaddr, cie, fde, @sizeOf(usize), native_endian); context.cfa = switch (row.cfa.rule) { .val_offset => |offset| blk: { const register = row.cfa.register orelse return error.InvalidCFARule; const value = (try regValueNative(context.thread_context, register, context.reg_context)).*; break :blk try applyOffset(value, offset); }, .expression => |expr| blk: { context.stack_machine.reset(); const value = try context.stack_machine.run( expr, gpa, expression_context, context.cfa, ); if (value) |v| { if (v != .generic) return error.InvalidExpressionValue; break :blk v.generic; } else return error.NoExpressionValue; }, else => return error.InvalidCFARule, }; expression_context.cfa = context.cfa; // Buffering the modifications is done because copying the thread context is not portable, // some implementations (ie. darwin) use internal pointers to the mcontext. var arena: std.heap.ArenaAllocator = .init(gpa); defer arena.deinit(); const update_arena = arena.allocator(); const RegisterUpdate = struct { // Backed by thread_context dest: []u8, // Backed by arena src: []const u8, prev: ?*@This(), }; var update_tail: ?*RegisterUpdate = null; var has_return_address = true; for (context.vm.rowColumns(row)) |column| { if (column.register) |register| { if (register == cie.return_address_register) { has_return_address = column.rule != .undefined; } const dest = try regBytes(context.thread_context, register, context.reg_context); const src = try update_arena.alloc(u8, dest.len); try context.resolveRegisterRule(gpa, column, expression_context, src); const new_update = try update_arena.create(RegisterUpdate); new_update.* = .{ .dest = dest, .src = src, .prev = update_tail, }; update_tail = new_update; } } // On all implemented architectures, the CFA is defined as being the previous frame's SP (try regValueNative(context.thread_context, Dwarf.abi.spRegNum(native_arch, context.reg_context), context.reg_context)).* = context.cfa.?; while (update_tail) |tail| { @memcpy(tail.dest, tail.src); update_tail = tail.prev; } if (has_return_address) { context.pc = stripInstructionPtrAuthCode((try regValueNative( context.thread_context, cie.return_address_register, context.reg_context, )).*); } else { context.pc = 0; } const ip_reg_num = Dwarf.abi.ipRegNum(native_arch).?; (try regValueNative(context.thread_context, ip_reg_num, context.reg_context)).* = context.pc; // The call instruction will have pushed the address of the instruction that follows the call as the return address. // This next instruction may be past the end of the function if the caller was `noreturn` (ie. the last instruction in // the function was the call). If we were to look up an FDE entry using the return address directly, it could end up // either not finding an FDE at all, or using the next FDE in the program, producing incorrect results. To prevent this, // we subtract one so that the next lookup is guaranteed to land inside the // // The exception to this rule is signal frames, where we return execution would be returned to the instruction // that triggered the handler. const return_address = context.pc; if (context.pc > 0 and !cie.is_signal_frame) context.pc -= 1; return return_address; } /// Since register rules are applied (usually) during a panic, /// checked addition / subtraction is used so that we can return /// an error and fall back to FP-based unwinding. fn applyOffset(base: usize, offset: i64) !usize { return if (offset >= 0) try std.math.add(usize, base, @as(usize, @intCast(offset))) else try std.math.sub(usize, base, @as(usize, @intCast(-offset))); } /// Some platforms use pointer authentication - the upper bits of instruction pointers contain a signature. /// This function clears these signature bits to make the pointer usable. pub inline fn stripInstructionPtrAuthCode(ptr: usize) usize { if (native_arch.isAARCH64()) { // `hint 0x07` maps to `xpaclri` (or `nop` if the hardware doesn't support it) // The save / restore is because `xpaclri` operates on x30 (LR) return asm ( \\mov x16, x30 \\mov x30, x15 \\hint 0x07 \\mov x15, x30 \\mov x30, x16 : [ret] "={x15}" (-> usize), : [ptr] "{x15}" (ptr), : .{ .x16 = true }); } return ptr; } };