const std = @import("../std.zig"); const assert = std.debug.assert; const Allocator = std.mem.Allocator; const Io = std.Io; const EventLoop = @This(); gpa: Allocator, queue: std.DoublyLinkedList(void), free: std.DoublyLinkedList(void), main_fiber_buffer: [@sizeOf(Fiber) + max_result_len]u8 align(@alignOf(Fiber)), threadlocal var current_fiber: *Fiber = undefined; const max_result_len = 64; const min_stack_size = 4 * 1024 * 1024; const Fiber = struct { regs: Regs, awaiter: ?*Fiber, queue_node: std.DoublyLinkedList(void).Node, const finished: ?*Fiber = @ptrFromInt(std.mem.alignBackward(usize, std.math.maxInt(usize), @alignOf(Fiber))); fn resultPointer(f: *Fiber) [*]u8 { const base: [*]u8 = @ptrCast(f); return base + @sizeOf(Fiber); } fn stackEndPointer(f: *Fiber) [*]u8 { const base: [*]u8 = @ptrCast(f); return base + std.mem.alignForward( usize, @sizeOf(Fiber) + max_result_len + min_stack_size, std.heap.page_size_max, ); } }; pub fn init(el: *EventLoop, gpa: Allocator) void { el.* = .{ .gpa = gpa, .queue = .{}, .free = .{}, .main_fiber_buffer = undefined, }; current_fiber = @ptrCast(&el.main_fiber_buffer); } fn allocateFiber(el: *EventLoop, result_len: usize) error{OutOfMemory}!*Fiber { assert(result_len <= max_result_len); const free_node = el.free.pop() orelse { const n = std.mem.alignForward( usize, @sizeOf(Fiber) + max_result_len + min_stack_size, std.heap.page_size_max, ); return @alignCast(@ptrCast(try el.gpa.alignedAlloc(u8, @alignOf(Fiber), n))); }; return @fieldParentPtr("queue_node", free_node); } fn yield(el: *EventLoop, optional_fiber: ?*Fiber) void { if (optional_fiber) |fiber| { const old = ¤t_fiber.regs; current_fiber = fiber; contextSwitch(old, &fiber.regs); return; } if (el.queue.pop()) |node| { const fiber: *Fiber = @fieldParentPtr("queue_node", node); const old = ¤t_fiber.regs; current_fiber = fiber; contextSwitch(old, &fiber.regs); return; } @panic("everything is done"); } /// Equivalent to calling `yield` and then giving the fiber back to the event loop. fn exit(el: *EventLoop, optional_fiber: ?*Fiber) noreturn { yield(el, optional_fiber); @panic("TODO recycle the fiber"); } fn schedule(el: *EventLoop, fiber: *Fiber) void { el.queue.append(&fiber.queue_node); } fn myFiber(el: *EventLoop) *Fiber { _ = el; return current_fiber; } const Regs = extern struct { rsp: usize, r15: usize, r14: usize, r13: usize, r12: usize, rbx: usize, rbp: usize, }; const contextSwitch: *const fn (old: *Regs, new: *Regs) callconv(.c) void = @ptrCast(&contextSwitch_naked); noinline fn contextSwitch_naked() callconv(.naked) void { asm volatile ( \\movq %%rsp, 0x00(%%rdi) \\movq %%r15, 0x08(%%rdi) \\movq %%r14, 0x10(%%rdi) \\movq %%r13, 0x18(%%rdi) \\movq %%r12, 0x20(%%rdi) \\movq %%rbx, 0x28(%%rdi) \\movq %%rbp, 0x30(%%rdi) \\ \\movq 0x00(%%rsi), %%rsp \\movq 0x08(%%rsi), %%r15 \\movq 0x10(%%rsi), %%r14 \\movq 0x18(%%rsi), %%r13 \\movq 0x20(%%rsi), %%r12 \\movq 0x28(%%rsi), %%rbx \\movq 0x30(%%rsi), %%rbp \\ \\ret ); } fn popRet() callconv(.naked) void { asm volatile ( \\pop %%rdi \\ret ); } pub fn @"async"( userdata: ?*anyopaque, eager_result: []u8, context: ?*anyopaque, start: *const fn (context: ?*anyopaque, result: *anyopaque) void, ) ?*std.Io.AnyFuture { const event_loop: *EventLoop = @alignCast(@ptrCast(userdata)); const fiber = event_loop.allocateFiber(eager_result.len) catch { start(context, eager_result.ptr); return null; }; fiber.awaiter = null; fiber.queue_node = .{ .data = {} }; const closure: *AsyncClosure = @ptrFromInt(std.mem.alignBackward( usize, @intFromPtr(fiber.stackEndPointer() - @sizeOf(AsyncClosure)), @alignOf(AsyncClosure), )); closure.* = .{ .event_loop = event_loop, .context = context, .fiber = fiber, .start = start, }; const stack_end_ptr: [*]align(16) usize = @alignCast(@ptrCast(closure)); (stack_end_ptr - 1)[0] = 0; (stack_end_ptr - 2)[0] = @intFromPtr(&AsyncClosure.call); (stack_end_ptr - 3)[0] = @intFromPtr(closure); (stack_end_ptr - 4)[0] = @intFromPtr(&popRet); fiber.regs = .{ .rsp = @intFromPtr(stack_end_ptr - 4), .r15 = 0, .r14 = 0, .r13 = 0, .r12 = 0, .rbx = 0, .rbp = 0, }; event_loop.schedule(fiber); return @ptrCast(fiber); } const AsyncClosure = struct { _: void align(16) = {}, event_loop: *EventLoop, context: ?*anyopaque, fiber: *EventLoop.Fiber, start: *const fn (context: ?*anyopaque, result: *anyopaque) void, fn call(closure: *AsyncClosure) callconv(.c) void { std.log.debug("wrap called in async", .{}); closure.start(closure.context, closure.fiber.resultPointer()); const awaiter = @atomicRmw(?*EventLoop.Fiber, &closure.fiber.awaiter, .Xchg, EventLoop.Fiber.finished, .seq_cst); closure.event_loop.exit(awaiter); } }; pub fn @"await"(userdata: ?*anyopaque, any_future: *std.Io.AnyFuture, result: []u8) void { const event_loop: *EventLoop = @alignCast(@ptrCast(userdata)); const future_fiber: *EventLoop.Fiber = @alignCast(@ptrCast(any_future)); const result_src = future_fiber.resultPointer()[0..result.len]; const my_fiber = event_loop.myFiber(); const prev = @atomicRmw(?*EventLoop.Fiber, &future_fiber.awaiter, .Xchg, my_fiber, .seq_cst); if (prev == EventLoop.Fiber.finished) { @memcpy(result, result_src); return; } event_loop.yield(prev); // Resumed when the value is available. std.log.debug("yield returned in await", .{}); @memcpy(result, result_src); }