// SPDX-License-Identifier: MIT // Copyright (c) 2015-2021 Zig Contributors // This file is part of [zig](https://ziglang.org/), which is MIT licensed. // The MIT license requires this copyright notice to be included in all copies // and substantial portions of the software. const std = @import("std"); pub inline fn __builtin_bswap16(val: u16) callconv(.C) u16 { return @byteSwap(u16, val); } pub inline fn __builtin_bswap32(val: u32) callconv(.C) u32 { return @byteSwap(u32, val); } pub inline fn __builtin_bswap64(val: u64) callconv(.C) u64 { return @byteSwap(u64, val); } pub inline fn __builtin_signbit(val: f64) callconv(.C) c_int { return @boolToInt(std.math.signbit(val)); } pub inline fn __builtin_signbitf(val: f32) callconv(.C) c_int { return @boolToInt(std.math.signbit(val)); } pub inline fn __builtin_popcount(val: c_uint) callconv(.C) c_int { // popcount of a c_uint will never exceed the capacity of a c_int @setRuntimeSafety(false); return @bitCast(c_int, @as(c_uint, @popCount(c_uint, val))); } pub inline fn __builtin_ctz(val: c_uint) callconv(.C) c_int { // Returns the number of trailing 0-bits in val, starting at the least significant bit position. // In C if `val` is 0, the result is undefined; in zig it's the number of bits in a c_uint @setRuntimeSafety(false); return @bitCast(c_int, @as(c_uint, @ctz(c_uint, val))); } pub inline fn __builtin_clz(val: c_uint) callconv(.C) c_int { // Returns the number of leading 0-bits in x, starting at the most significant bit position. // In C if `val` is 0, the result is undefined; in zig it's the number of bits in a c_uint @setRuntimeSafety(false); return @bitCast(c_int, @as(c_uint, @clz(c_uint, val))); } pub inline fn __builtin_sqrt(val: f64) callconv(.C) f64 { return @sqrt(val); } pub inline fn __builtin_sqrtf(val: f32) callconv(.C) f32 { return @sqrt(val); } pub inline fn __builtin_sin(val: f64) callconv(.C) f64 { return @sin(val); } pub inline fn __builtin_sinf(val: f32) callconv(.C) f32 { return @sin(val); } pub inline fn __builtin_cos(val: f64) callconv(.C) f64 { return @cos(val); } pub inline fn __builtin_cosf(val: f32) callconv(.C) f32 { return @cos(val); } pub inline fn __builtin_exp(val: f64) callconv(.C) f64 { return @exp(val); } pub inline fn __builtin_expf(val: f32) callconv(.C) f32 { return @exp(val); } pub inline fn __builtin_exp2(val: f64) callconv(.C) f64 { return @exp2(val); } pub inline fn __builtin_exp2f(val: f32) callconv(.C) f32 { return @exp2(val); } pub inline fn __builtin_log(val: f64) callconv(.C) f64 { return @log(val); } pub inline fn __builtin_logf(val: f32) callconv(.C) f32 { return @log(val); } pub inline fn __builtin_log2(val: f64) callconv(.C) f64 { return @log2(val); } pub inline fn __builtin_log2f(val: f32) callconv(.C) f32 { return @log2(val); } pub inline fn __builtin_log10(val: f64) callconv(.C) f64 { return @log10(val); } pub inline fn __builtin_log10f(val: f32) callconv(.C) f32 { return @log10(val); } // Standard C Library bug: The absolute value of the most negative integer remains negative. pub inline fn __builtin_abs(val: c_int) callconv(.C) c_int { return std.math.absInt(val) catch std.math.minInt(c_int); } pub inline fn __builtin_fabs(val: f64) callconv(.C) f64 { return @fabs(val); } pub inline fn __builtin_fabsf(val: f32) callconv(.C) f32 { return @fabs(val); } pub inline fn __builtin_floor(val: f64) callconv(.C) f64 { return @floor(val); } pub inline fn __builtin_floorf(val: f32) callconv(.C) f32 { return @floor(val); } pub inline fn __builtin_ceil(val: f64) callconv(.C) f64 { return @ceil(val); } pub inline fn __builtin_ceilf(val: f32) callconv(.C) f32 { return @ceil(val); } pub inline fn __builtin_trunc(val: f64) callconv(.C) f64 { return @trunc(val); } pub inline fn __builtin_truncf(val: f32) callconv(.C) f32 { return @trunc(val); } pub inline fn __builtin_round(val: f64) callconv(.C) f64 { return @round(val); } pub inline fn __builtin_roundf(val: f32) callconv(.C) f32 { return @round(val); } pub inline fn __builtin_strlen(s: [*c]const u8) callconv(.C) usize { return std.mem.lenZ(s); } pub inline fn __builtin_strcmp(s1: [*c]const u8, s2: [*c]const u8) callconv(.C) c_int { return @as(c_int, std.cstr.cmp(s1, s2)); } pub inline fn __builtin_object_size(ptr: ?*const c_void, ty: c_int) callconv(.C) usize { // clang semantics match gcc's: https://gcc.gnu.org/onlinedocs/gcc/Object-Size-Checking.html // If it is not possible to determine which objects ptr points to at compile time, // __builtin_object_size should return (size_t) -1 for type 0 or 1 and (size_t) 0 // for type 2 or 3. if (ty == 0 or ty == 1) return @bitCast(usize, -@as(c_long, 1)); if (ty == 2 or ty == 3) return 0; unreachable; } pub inline fn __builtin___memset_chk( dst: ?*c_void, val: c_int, len: usize, remaining: usize, ) callconv(.C) ?*c_void { if (len > remaining) @panic("std.c.builtins.memset_chk called with len > remaining"); return __builtin_memset(dst, val, len); } pub inline fn __builtin_memset(dst: ?*c_void, val: c_int, len: usize) callconv(.C) ?*c_void { const dst_cast = @ptrCast([*c]u8, dst); @memset(dst_cast, @bitCast(u8, @truncate(i8, val)), len); return dst; } pub inline fn __builtin___memcpy_chk( noalias dst: ?*c_void, noalias src: ?*const c_void, len: usize, remaining: usize, ) callconv(.C) ?*c_void { if (len > remaining) @panic("std.c.builtins.memcpy_chk called with len > remaining"); return __builtin_memcpy(dst, src, len); } pub inline fn __builtin_memcpy( noalias dst: ?*c_void, noalias src: ?*const c_void, len: usize, ) callconv(.C) ?*c_void { const dst_cast = @ptrCast([*c]u8, dst); const src_cast = @ptrCast([*c]const u8, src); @memcpy(dst_cast, src_cast, len); return dst; }