const std = @import("../std.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const Allocator = std.mem.Allocator; const Io = std.Io; const EventLoop = @This(); const Alignment = std.mem.Alignment; gpa: Allocator, mutex: std.Thread.Mutex, cond: std.Thread.Condition, queue: std.DoublyLinkedList(void), free: std.DoublyLinkedList(void), main_context: Context, exit_awaiter: ?*Fiber, idle_count: usize, threads: std.ArrayListUnmanaged(Thread), threadlocal var current_idle_context: *Context = undefined; threadlocal var current_context: *Context = undefined; /// Empirically saw 10KB being used by the self-hosted backend for logging. const idle_stack_size = 32 * 1024; const Thread = struct { thread: std.Thread, idle_context: Context, }; const Fiber = struct { context: Context, awaiter: ?*Fiber, queue_node: std.DoublyLinkedList(void).Node, result_align: Alignment, const finished: ?*Fiber = @ptrFromInt(std.mem.alignBackward(usize, std.math.maxInt(usize), @alignOf(Fiber))); const max_result_align: Alignment = .@"16"; const max_result_size = max_result_align.forward(64); /// This includes any stack realignments that need to happen, and also the /// initial frame return address slot and argument frame, depending on target. const min_stack_size = 4 * 1024 * 1024; const max_context_align: Alignment = .@"16"; const max_context_size = max_context_align.forward(1024); const allocation_size = std.mem.alignForward( usize, std.mem.alignForward( usize, max_result_align.forward(@sizeOf(Fiber)) + max_result_size + min_stack_size, @max(@alignOf(AsyncClosure), max_context_align.toByteUnits()), ) + @sizeOf(AsyncClosure) + max_context_size, std.heap.page_size_max, ); fn allocate(el: *EventLoop) error{OutOfMemory}!*Fiber { return if (free_node: { el.mutex.lock(); defer el.mutex.unlock(); break :free_node el.free.pop(); }) |free_node| @alignCast(@fieldParentPtr("queue_node", free_node)) else @ptrCast(try el.gpa.alignedAlloc(u8, @alignOf(Fiber), allocation_size)); } fn allocatedSlice(f: *Fiber) []align(@alignOf(Fiber)) u8 { return @as([*]align(@alignOf(Fiber)) u8, @ptrCast(f))[0..allocation_size]; } fn allocatedEnd(f: *Fiber) [*]u8 { const allocated_slice = f.allocatedSlice(); return allocated_slice[allocated_slice.len..].ptr; } fn resultPointer(f: *Fiber) [*]u8 { return @ptrFromInt(f.result_align.forward(@intFromPtr(f) + @sizeOf(Fiber))); } }; pub fn io(el: *EventLoop) Io { return .{ .userdata = el, .vtable = &.{ .@"async" = @"async", .@"await" = @"await", }, }; } pub fn init(el: *EventLoop, gpa: Allocator) error{OutOfMemory}!void { const threads_bytes = ((std.Thread.getCpuCount() catch 1) -| 1) * @sizeOf(Thread); const idle_context_offset = std.mem.alignForward(usize, threads_bytes, @alignOf(Context)); const idle_stack_end_offset = std.mem.alignForward(usize, idle_context_offset + idle_stack_size, std.heap.page_size_max); const allocated_slice = try gpa.alignedAlloc(u8, @max(@alignOf(Thread), @alignOf(Context)), idle_stack_end_offset); errdefer gpa.free(allocated_slice); el.* = .{ .gpa = gpa, .mutex = .{}, .cond = .{}, .queue = .{}, .free = .{}, .main_context = undefined, .exit_awaiter = null, .idle_count = 0, .threads = .initBuffer(@ptrCast(allocated_slice[0..threads_bytes])), }; const main_idle_context: *Context = @alignCast(std.mem.bytesAsValue(Context, allocated_slice[idle_context_offset..][0..@sizeOf(Context)])); const idle_stack_end: [*]align(@max(@alignOf(Thread), @alignOf(Context))) usize = @alignCast(@ptrCast(allocated_slice[idle_stack_end_offset..].ptr)); (idle_stack_end - 1)[0..1].* = .{@intFromPtr(el)}; main_idle_context.* = .{ .rsp = @intFromPtr(idle_stack_end - 1), .rbp = 0, .rip = @intFromPtr(&mainIdleEntry), }; std.log.debug("created main idle {*}", .{main_idle_context}); current_idle_context = main_idle_context; std.log.debug("created main {*}", .{&el.main_context}); current_context = &el.main_context; } pub fn deinit(el: *EventLoop) void { assert(el.queue.len == 0); // pending async el.yield(null, &el.exit_awaiter); while (el.free.pop()) |free_node| { const free_fiber: *Fiber = @alignCast(@fieldParentPtr("queue_node", free_node)); el.gpa.free(free_fiber.allocatedSlice()); } const idle_context_offset = std.mem.alignForward(usize, el.threads.items.len * @sizeOf(Thread), @alignOf(Context)); const idle_stack_end = std.mem.alignForward(usize, idle_context_offset + idle_stack_size, std.heap.page_size_max); const allocated_ptr: [*]align(@max(@alignOf(Thread), @alignOf(Context))) u8 = @alignCast(@ptrCast(el.threads.items.ptr)); for (el.threads.items) |*thread| thread.thread.join(); el.gpa.free(allocated_ptr[0..idle_stack_end]); } fn yield(el: *EventLoop, optional_fiber: ?*Fiber, register_awaiter: ?*?*Fiber) void { const ready_context: *Context = ready_context: { const ready_fiber: *Fiber = optional_fiber orelse if (ready_node: { el.mutex.lock(); defer el.mutex.unlock(); break :ready_node el.queue.pop(); }) |ready_node| @alignCast(@fieldParentPtr("queue_node", ready_node)) else break :ready_context current_idle_context; break :ready_context &ready_fiber.context; }; const message: SwitchMessage = .{ .prev_context = current_context, .ready_context = ready_context, .register_awaiter = register_awaiter, }; std.log.debug("switching from {*} to {*}", .{ message.prev_context, message.ready_context }); contextSwitch(&message).handle(el); } fn schedule(el: *EventLoop, fiber: *Fiber) void { el.mutex.lock(); el.queue.append(&fiber.queue_node); if (el.idle_count > 0) { el.mutex.unlock(); el.cond.signal(); return; } defer el.mutex.unlock(); if (el.threads.items.len == el.threads.capacity) return; const thread = el.threads.addOneAssumeCapacity(); thread.thread = std.Thread.spawn(.{ .stack_size = idle_stack_size, .allocator = el.gpa, }, threadEntry, .{ el, thread }) catch { el.threads.items.len -= 1; return; }; } fn recycle(el: *EventLoop, fiber: *Fiber) void { std.log.debug("recyling {*}", .{fiber}); @memset(fiber.allocatedSlice(), undefined); el.mutex.lock(); defer el.mutex.unlock(); el.free.append(&fiber.queue_node); } fn mainIdle(el: *EventLoop, message: *const SwitchMessage) callconv(.withStackAlign(.c, @max(@alignOf(Thread), @alignOf(Context)))) noreturn { message.handle(el); el.yield(el.idle(), null); unreachable; // switched to dead fiber } fn threadEntry(el: *EventLoop, thread: *Thread) void { std.log.debug("created thread idle {*}", .{&thread.idle_context}); current_idle_context = &thread.idle_context; current_context = &thread.idle_context; _ = el.idle(); } fn idle(el: *EventLoop) *Fiber { while (true) { el.yield(null, null); if (@atomicLoad(?*Fiber, &el.exit_awaiter, .acquire)) |exit_awaiter| { el.cond.broadcast(); return exit_awaiter; } el.mutex.lock(); defer el.mutex.unlock(); el.idle_count += 1; defer el.idle_count -= 1; el.cond.wait(&el.mutex); } } const SwitchMessage = extern struct { prev_context: *Context, ready_context: *Context, register_awaiter: ?*?*Fiber, fn handle(message: *const SwitchMessage, el: *EventLoop) void { current_context = message.ready_context; if (message.register_awaiter) |awaiter| { const prev_fiber: *Fiber = @alignCast(@fieldParentPtr("context", message.prev_context)); if (@atomicRmw(?*Fiber, awaiter, .Xchg, prev_fiber, .acq_rel) == Fiber.finished) el.schedule(prev_fiber); } } }; const Context = switch (builtin.cpu.arch) { .x86_64 => extern struct { rsp: u64, rbp: u64, rip: u64, }, else => |arch| @compileError("unimplemented architecture: " ++ @tagName(arch)), }; inline fn contextSwitch(message: *const SwitchMessage) *const SwitchMessage { return switch (builtin.cpu.arch) { .x86_64 => asm volatile ( \\ movq 0(%%rsi), %%rax \\ movq 8(%%rsi), %%rcx \\ leaq 0f(%%rip), %%rdx \\ movq %%rsp, 0(%%rax) \\ movq %%rbp, 8(%%rax) \\ movq %%rdx, 16(%%rax) \\ movq 0(%%rcx), %%rsp \\ movq 8(%%rcx), %%rbp \\ jmpq *16(%%rcx) \\0: : [received_message] "={rsi}" (-> *const SwitchMessage), : [message_to_send] "{rsi}" (message), : "rax", "rcx", "rdx", "rbx", "rdi", // "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", // "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", // "zmm0", "zmm1", "zmm2", "zmm3", "zmm4", "zmm5", "zmm6", "zmm7", // "zmm8", "zmm9", "zmm10", "zmm11", "zmm12", "zmm13", "zmm14", "zmm15", // "zmm16", "zmm17", "zmm18", "zmm19", "zmm20", "zmm21", "zmm22", "zmm23", // "zmm24", "zmm25", "zmm26", "zmm27", "zmm28", "zmm29", "zmm30", "zmm31", // "fpsr", "fpcr", "mxcsr", "rflags", "dirflag", "memory" ), else => |arch| @compileError("unimplemented architecture: " ++ @tagName(arch)), }; } fn mainIdleEntry() callconv(.naked) void { switch (builtin.cpu.arch) { .x86_64 => asm volatile ( \\ movq (%%rsp), %%rdi \\ jmp %[mainIdle:P] : : [mainIdle] "X" (&mainIdle), ), else => |arch| @compileError("unimplemented architecture: " ++ @tagName(arch)), } } fn fiberEntry() callconv(.naked) void { switch (builtin.cpu.arch) { .x86_64 => asm volatile ( \\ leaq 8(%%rsp), %%rdi \\ jmp %[AsyncClosure_call:P] : : [AsyncClosure_call] "X" (&AsyncClosure.call), ), else => |arch| @compileError("unimplemented architecture: " ++ @tagName(arch)), } } pub fn @"async"( userdata: ?*anyopaque, result: []u8, result_alignment: Alignment, context: []const u8, context_alignment: Alignment, start: *const fn (context: *const anyopaque, result: *anyopaque) void, ) ?*std.Io.AnyFuture { assert(result_alignment.compare(.lte, Fiber.max_result_align)); // TODO assert(context_alignment.compare(.lte, Fiber.max_context_align)); // TODO assert(result.len <= Fiber.max_result_size); // TODO assert(context.len <= Fiber.max_context_size); // TODO const event_loop: *EventLoop = @alignCast(@ptrCast(userdata)); const fiber = Fiber.allocate(event_loop) catch { start(context.ptr, result.ptr); return null; }; std.log.debug("allocated {*}", .{fiber}); const closure: *AsyncClosure = @ptrFromInt(Fiber.max_context_align.max(.of(AsyncClosure)).backward( @intFromPtr(fiber.allocatedEnd()) - Fiber.max_context_size, ) - @sizeOf(AsyncClosure)); fiber.* = .{ .context = switch (builtin.cpu.arch) { .x86_64 => .{ .rsp = @intFromPtr(closure) - @sizeOf(usize), .rbp = 0, .rip = @intFromPtr(&fiberEntry), }, else => |arch| @compileError("unimplemented architecture: " ++ @tagName(arch)), }, .awaiter = null, .queue_node = undefined, .result_align = result_alignment, }; closure.* = .{ .event_loop = event_loop, .fiber = fiber, .start = start, }; @memcpy(closure.contextPointer(), context); event_loop.schedule(fiber); return @ptrCast(fiber); } const AsyncClosure = struct { event_loop: *EventLoop, fiber: *Fiber, start: *const fn (context: *const anyopaque, result: *anyopaque) void, fn contextPointer(closure: *AsyncClosure) [*]align(Fiber.max_context_align.toByteUnits()) u8 { return @alignCast(@as([*]u8, @ptrCast(closure)) + @sizeOf(AsyncClosure)); } fn call(closure: *AsyncClosure, message: *const SwitchMessage) callconv(.withStackAlign(.c, @alignOf(AsyncClosure))) noreturn { message.handle(closure.event_loop); std.log.debug("{*} performing async", .{closure.fiber}); closure.start(closure.contextPointer(), closure.fiber.resultPointer()); const awaiter = @atomicRmw(?*Fiber, &closure.fiber.awaiter, .Xchg, Fiber.finished, .acq_rel); closure.event_loop.yield(awaiter, null); unreachable; // switched to dead fiber } }; pub fn @"await"(userdata: ?*anyopaque, any_future: *std.Io.AnyFuture, result: []u8) void { const event_loop: *EventLoop = @alignCast(@ptrCast(userdata)); const future_fiber: *Fiber = @alignCast(@ptrCast(any_future)); if (@atomicLoad(?*Fiber, &future_fiber.awaiter, .acquire) != Fiber.finished) event_loop.yield(null, &future_fiber.awaiter); @memcpy(result, future_fiber.resultPointer()); event_loop.recycle(future_fiber); }