const std = @import("std"); const math = std.math; const builtin = @import("builtin"); const common = @import("./common.zig"); /// Ported from: /// https://github.com/llvm/llvm-project/blob/2ffb1b0413efa9a24eb3c49e710e36f92e2cb50b/compiler-rt/lib/builtins/fp_mul_impl.inc pub inline fn mulf3(comptime T: type, a: T, b: T) T { @setRuntimeSafety(builtin.is_test); const typeWidth = @typeInfo(T).Float.bits; const significandBits = math.floatMantissaBits(T); const fractionalBits = math.floatFractionalBits(T); const exponentBits = math.floatExponentBits(T); const Z = std.meta.Int(.unsigned, typeWidth); // ZSignificand is large enough to contain the significand, including an explicit integer bit const ZSignificand = PowerOfTwoSignificandZ(T); const ZSignificandBits = @typeInfo(ZSignificand).Int.bits; const roundBit = (1 << (ZSignificandBits - 1)); const signBit = (@as(Z, 1) << (significandBits + exponentBits)); const maxExponent = ((1 << exponentBits) - 1); const exponentBias = (maxExponent >> 1); const integerBit = (@as(ZSignificand, 1) << fractionalBits); const quietBit = integerBit >> 1; const significandMask = (@as(Z, 1) << significandBits) - 1; const absMask = signBit - 1; const qnanRep = @as(Z, @bitCast(math.nan(T))) | quietBit; const infRep = @as(Z, @bitCast(math.inf(T))); const minNormalRep = @as(Z, @bitCast(math.floatMin(T))); const ZExp = if (typeWidth >= 32) u32 else Z; const aExponent = @as(ZExp, @truncate((@as(Z, @bitCast(a)) >> significandBits) & maxExponent)); const bExponent = @as(ZExp, @truncate((@as(Z, @bitCast(b)) >> significandBits) & maxExponent)); const productSign: Z = (@as(Z, @bitCast(a)) ^ @as(Z, @bitCast(b))) & signBit; var aSignificand: ZSignificand = @as(ZSignificand, @intCast(@as(Z, @bitCast(a)) & significandMask)); var bSignificand: ZSignificand = @as(ZSignificand, @intCast(@as(Z, @bitCast(b)) & significandMask)); var scale: i32 = 0; // Detect if a or b is zero, denormal, infinity, or NaN. if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) { const aAbs: Z = @as(Z, @bitCast(a)) & absMask; const bAbs: Z = @as(Z, @bitCast(b)) & absMask; // NaN * anything = qNaN if (aAbs > infRep) return @as(T, @bitCast(@as(Z, @bitCast(a)) | quietBit)); // anything * NaN = qNaN if (bAbs > infRep) return @as(T, @bitCast(@as(Z, @bitCast(b)) | quietBit)); if (aAbs == infRep) { // infinity * non-zero = +/- infinity if (bAbs != 0) { return @as(T, @bitCast(aAbs | productSign)); } else { // infinity * zero = NaN return @as(T, @bitCast(qnanRep)); } } if (bAbs == infRep) { //? non-zero * infinity = +/- infinity if (aAbs != 0) { return @as(T, @bitCast(bAbs | productSign)); } else { // zero * infinity = NaN return @as(T, @bitCast(qnanRep)); } } // zero * anything = +/- zero if (aAbs == 0) return @as(T, @bitCast(productSign)); // anything * zero = +/- zero if (bAbs == 0) return @as(T, @bitCast(productSign)); // one or both of a or b is denormal, the other (if applicable) is a // normal number. Renormalize one or both of a and b, and set scale to // include the necessary exponent adjustment. if (aAbs < minNormalRep) scale += normalize(T, &aSignificand); if (bAbs < minNormalRep) scale += normalize(T, &bSignificand); } // Or in the implicit significand bit. (If we fell through from the // denormal path it was already set by normalize( ), but setting it twice // won't hurt anything.) aSignificand |= integerBit; bSignificand |= integerBit; // Get the significand of a*b. Before multiplying the significands, shift // one of them left to left-align it in the field. Thus, the product will // have (exponentBits + 2) integral digits, all but two of which must be // zero. Normalizing this result is just a conditional left-shift by one // and bumping the exponent accordingly. var productHi: ZSignificand = undefined; var productLo: ZSignificand = undefined; const left_align_shift = ZSignificandBits - fractionalBits - 1; common.wideMultiply(ZSignificand, aSignificand, bSignificand << left_align_shift, &productHi, &productLo); var productExponent: i32 = @as(i32, @intCast(aExponent + bExponent)) - exponentBias + scale; // Normalize the significand, adjust exponent if needed. if ((productHi & integerBit) != 0) { productExponent +%= 1; } else { productHi = (productHi << 1) | (productLo >> (ZSignificandBits - 1)); productLo = productLo << 1; } // If we have overflowed the type, return +/- infinity. if (productExponent >= maxExponent) return @as(T, @bitCast(infRep | productSign)); var result: Z = undefined; if (productExponent <= 0) { // Result is denormal before rounding // // If the result is so small that it just underflows to zero, return // a zero of the appropriate sign. Mathematically there is no need to // handle this case separately, but we make it a special case to // simplify the shift logic. const shift: u32 = @as(u32, @truncate(@as(Z, 1) -% @as(u32, @bitCast(productExponent)))); if (shift >= ZSignificandBits) return @as(T, @bitCast(productSign)); // Otherwise, shift the significand of the result so that the round // bit is the high bit of productLo. const sticky = wideShrWithTruncation(ZSignificand, &productHi, &productLo, shift); productLo |= @intFromBool(sticky); result = productHi; // We include the integer bit so that rounding will carry to the exponent, // but it will be removed later if the result is still denormal if (significandBits != fractionalBits) result |= integerBit; } else { // Result is normal before rounding; insert the exponent. result = productHi & significandMask; result |= @as(Z, @intCast(productExponent)) << significandBits; } // Final rounding. The final result may overflow to infinity, or underflow // to zero, but those are the correct results in those cases. We use the // default IEEE-754 round-to-nearest, ties-to-even rounding mode. if (productLo > roundBit) result +%= 1; if (productLo == roundBit) result +%= result & 1; // Restore any explicit integer bit, if it was rounded off if (significandBits != fractionalBits) { if ((result >> significandBits) != 0) { result |= integerBit; } else { result &= ~integerBit; } } // Insert the sign of the result: result |= productSign; return @as(T, @bitCast(result)); } /// Returns `true` if the right shift is inexact (i.e. any bit shifted out is non-zero) /// /// This is analogous to an shr version of `@shlWithOverflow` fn wideShrWithTruncation(comptime Z: type, hi: *Z, lo: *Z, count: u32) bool { @setRuntimeSafety(builtin.is_test); const typeWidth = @typeInfo(Z).Int.bits; const S = math.Log2Int(Z); var inexact = false; if (count < typeWidth) { inexact = (lo.* << @as(S, @intCast(typeWidth -% count))) != 0; lo.* = (hi.* << @as(S, @intCast(typeWidth -% count))) | (lo.* >> @as(S, @intCast(count))); hi.* = hi.* >> @as(S, @intCast(count)); } else if (count < 2 * typeWidth) { inexact = (hi.* << @as(S, @intCast(2 * typeWidth -% count)) | lo.*) != 0; lo.* = hi.* >> @as(S, @intCast(count -% typeWidth)); hi.* = 0; } else { inexact = (hi.* | lo.*) != 0; lo.* = 0; hi.* = 0; } return inexact; } fn normalize(comptime T: type, significand: *PowerOfTwoSignificandZ(T)) i32 { const Z = PowerOfTwoSignificandZ(T); const integerBit = @as(Z, 1) << math.floatFractionalBits(T); const shift = @clz(significand.*) - @clz(integerBit); significand.* <<= @as(math.Log2Int(Z), @intCast(shift)); return @as(i32, 1) - shift; } /// Returns a power-of-two integer type that is large enough to contain /// the significand of T, including an explicit integer bit fn PowerOfTwoSignificandZ(comptime T: type) type { const bits = math.ceilPowerOfTwoAssert(u16, math.floatFractionalBits(T) + 1); return std.meta.Int(.unsigned, bits); } test { _ = @import("mulf3_test.zig"); }