zig/lib/std/heap/arena_allocator.zig
2025-04-13 02:20:32 -04:00

306 lines
13 KiB
Zig

const std = @import("../std.zig");
const assert = std.debug.assert;
const mem = std.mem;
const Allocator = std.mem.Allocator;
const Alignment = std.mem.Alignment;
/// This allocator takes an existing allocator, wraps it, and provides an interface where
/// you can allocate and then free it all together. Calls to free an individual item only
/// free the item if it was the most recent allocation, otherwise calls to free do
/// nothing.
pub const ArenaAllocator = struct {
child_allocator: Allocator,
state: State,
/// Inner state of ArenaAllocator. Can be stored rather than the entire ArenaAllocator
/// as a memory-saving optimization.
pub const State = struct {
buffer_list: std.SinglyLinkedList = .{},
end_index: usize = 0,
pub fn promote(self: State, child_allocator: Allocator) ArenaAllocator {
return .{
.child_allocator = child_allocator,
.state = self,
};
}
};
pub fn allocator(self: *ArenaAllocator) Allocator {
return .{
.ptr = self,
.vtable = &.{
.alloc = alloc,
.resize = resize,
.remap = remap,
.free = free,
},
};
}
const BufNode = struct {
data: usize,
node: std.SinglyLinkedList.Node = .{},
};
const BufNode_alignment: Alignment = .fromByteUnits(@alignOf(BufNode));
pub fn init(child_allocator: Allocator) ArenaAllocator {
return (State{}).promote(child_allocator);
}
pub fn deinit(self: ArenaAllocator) void {
// NOTE: When changing this, make sure `reset()` is adjusted accordingly!
var it = self.state.buffer_list.first;
while (it) |node| {
// this has to occur before the free because the free frees node
const next_it = node.next;
const buf_node: *BufNode = @fieldParentPtr("node", node);
const alloc_buf = @as([*]u8, @ptrCast(buf_node))[0..buf_node.data];
self.child_allocator.rawFree(alloc_buf, BufNode_alignment, @returnAddress());
it = next_it;
}
}
pub const ResetMode = union(enum) {
/// Releases all allocated memory in the arena.
free_all,
/// This will pre-heat the arena for future allocations by allocating a
/// large enough buffer for all previously done allocations.
/// Preheating will speed up the allocation process by invoking the backing allocator
/// less often than before. If `reset()` is used in a loop, this means that after the
/// biggest operation, no memory allocations are performed anymore.
retain_capacity,
/// This is the same as `retain_capacity`, but the memory will be shrunk to
/// this value if it exceeds the limit.
retain_with_limit: usize,
};
/// Queries the current memory use of this arena.
/// This will **not** include the storage required for internal keeping.
pub fn queryCapacity(self: ArenaAllocator) usize {
var size: usize = 0;
var it = self.state.buffer_list.first;
while (it) |node| : (it = node.next) {
// Compute the actually allocated size excluding the
// linked list node.
const buf_node: *BufNode = @fieldParentPtr("node", node);
size += buf_node.data - @sizeOf(BufNode);
}
return size;
}
/// Resets the arena allocator and frees all allocated memory.
///
/// `mode` defines how the currently allocated memory is handled.
/// See the variant documentation for `ResetMode` for the effects of each mode.
///
/// The function will return whether the reset operation was successful or not.
/// If the reallocation failed `false` is returned. The arena will still be fully
/// functional in that case, all memory is released. Future allocations just might
/// be slower.
///
/// NOTE: If `mode` is `free_all`, the function will always return `true`.
pub fn reset(self: *ArenaAllocator, mode: ResetMode) bool {
// Some words on the implementation:
// The reset function can be implemented with two basic approaches:
// - Counting how much bytes were allocated since the last reset, and storing that
// information in State. This will make reset fast and alloc only a teeny tiny bit
// slower.
// - Counting how much bytes were allocated by iterating the chunk linked list. This
// will make reset slower, but alloc() keeps the same speed when reset() as if reset()
// would not exist.
//
// The second variant was chosen for implementation, as with more and more calls to reset(),
// the function will get faster and faster. At one point, the complexity of the function
// will drop to amortized O(1), as we're only ever having a single chunk that will not be
// reallocated, and we're not even touching the backing allocator anymore.
//
// Thus, only the first hand full of calls to reset() will actually need to iterate the linked
// list, all future calls are just taking the first node, and only resetting the `end_index`
// value.
const requested_capacity = switch (mode) {
.retain_capacity => self.queryCapacity(),
.retain_with_limit => |limit| @min(limit, self.queryCapacity()),
.free_all => 0,
};
if (requested_capacity == 0) {
// just reset when we don't have anything to reallocate
self.deinit();
self.state = State{};
return true;
}
const total_size = requested_capacity + @sizeOf(BufNode);
// Free all nodes except for the last one
var it = self.state.buffer_list.first;
const maybe_first_node = while (it) |node| {
// this has to occur before the free because the free frees node
const next_it = node.next;
if (next_it == null)
break node;
const buf_node: *BufNode = @fieldParentPtr("node", node);
const alloc_buf = @as([*]u8, @ptrCast(buf_node))[0..buf_node.data];
self.child_allocator.rawFree(alloc_buf, BufNode_alignment, @returnAddress());
it = next_it;
} else null;
std.debug.assert(maybe_first_node == null or maybe_first_node.?.next == null);
// reset the state before we try resizing the buffers, so we definitely have reset the arena to 0.
self.state.end_index = 0;
if (maybe_first_node) |first_node| {
self.state.buffer_list.first = first_node;
// perfect, no need to invoke the child_allocator
const first_buf_node: *BufNode = @fieldParentPtr("node", first_node);
if (first_buf_node.data == total_size)
return true;
const first_alloc_buf = @as([*]u8, @ptrCast(first_buf_node))[0..first_buf_node.data];
if (self.child_allocator.rawResize(first_alloc_buf, BufNode_alignment, total_size, @returnAddress())) {
// successful resize
first_buf_node.data = total_size;
} else {
// manual realloc
const new_ptr = self.child_allocator.rawAlloc(total_size, BufNode_alignment, @returnAddress()) orelse {
// we failed to preheat the arena properly, signal this to the user.
return false;
};
self.child_allocator.rawFree(first_alloc_buf, BufNode_alignment, @returnAddress());
const buf_node: *BufNode = @ptrCast(@alignCast(new_ptr));
buf_node.* = .{ .data = total_size };
self.state.buffer_list.first = &buf_node.node;
}
}
return true;
}
fn createNode(self: *ArenaAllocator, prev_len: usize, minimum_size: usize) ?*BufNode {
const actual_min_size = minimum_size + (@sizeOf(BufNode) + 16);
const big_enough_len = prev_len + actual_min_size;
const len = big_enough_len + big_enough_len / 2;
const ptr = self.child_allocator.rawAlloc(len, BufNode_alignment, @returnAddress()) orelse
return null;
const buf_node: *BufNode = @ptrCast(@alignCast(ptr));
buf_node.* = .{ .data = len };
self.state.buffer_list.prepend(&buf_node.node);
self.state.end_index = 0;
return buf_node;
}
fn alloc(ctx: *anyopaque, n: usize, alignment: Alignment, ra: usize) ?[*]u8 {
const self: *ArenaAllocator = @ptrCast(@alignCast(ctx));
_ = ra;
const ptr_align = alignment.toByteUnits();
var cur_node: *BufNode = if (self.state.buffer_list.first) |first_node|
@fieldParentPtr("node", first_node)
else
(self.createNode(0, n + ptr_align) orelse return null);
while (true) {
const cur_alloc_buf = @as([*]u8, @ptrCast(cur_node))[0..cur_node.data];
const cur_buf = cur_alloc_buf[@sizeOf(BufNode)..];
const addr = @intFromPtr(cur_buf.ptr) + self.state.end_index;
const adjusted_addr = mem.alignForward(usize, addr, ptr_align);
const adjusted_index = self.state.end_index + (adjusted_addr - addr);
const new_end_index = adjusted_index + n;
if (new_end_index <= cur_buf.len) {
const result = cur_buf[adjusted_index..new_end_index];
self.state.end_index = new_end_index;
return result.ptr;
}
const bigger_buf_size = @sizeOf(BufNode) + new_end_index;
if (self.child_allocator.rawResize(cur_alloc_buf, BufNode_alignment, bigger_buf_size, @returnAddress())) {
cur_node.data = bigger_buf_size;
} else {
// Allocate a new node if that's not possible
cur_node = self.createNode(cur_buf.len, n + ptr_align) orelse return null;
}
}
}
fn resize(ctx: *anyopaque, buf: []u8, alignment: Alignment, new_len: usize, ret_addr: usize) bool {
const self: *ArenaAllocator = @ptrCast(@alignCast(ctx));
_ = alignment;
_ = ret_addr;
const cur_node = self.state.buffer_list.first orelse return false;
const cur_buf_node: *BufNode = @fieldParentPtr("node", cur_node);
const cur_buf = @as([*]u8, @ptrCast(cur_buf_node))[@sizeOf(BufNode)..cur_buf_node.data];
if (@intFromPtr(cur_buf.ptr) + self.state.end_index != @intFromPtr(buf.ptr) + buf.len) {
// It's not the most recent allocation, so it cannot be expanded,
// but it's fine if they want to make it smaller.
return new_len <= buf.len;
}
if (buf.len >= new_len) {
self.state.end_index -= buf.len - new_len;
return true;
} else if (cur_buf.len - self.state.end_index >= new_len - buf.len) {
self.state.end_index += new_len - buf.len;
return true;
} else {
return false;
}
}
fn remap(
context: *anyopaque,
memory: []u8,
alignment: Alignment,
new_len: usize,
return_address: usize,
) ?[*]u8 {
return if (resize(context, memory, alignment, new_len, return_address)) memory.ptr else null;
}
fn free(ctx: *anyopaque, buf: []u8, alignment: Alignment, ret_addr: usize) void {
_ = alignment;
_ = ret_addr;
const self: *ArenaAllocator = @ptrCast(@alignCast(ctx));
const cur_node = self.state.buffer_list.first orelse return;
const cur_buf_node: *BufNode = @fieldParentPtr("node", cur_node);
const cur_buf = @as([*]u8, @ptrCast(cur_buf_node))[@sizeOf(BufNode)..cur_buf_node.data];
if (@intFromPtr(cur_buf.ptr) + self.state.end_index == @intFromPtr(buf.ptr) + buf.len) {
self.state.end_index -= buf.len;
}
}
};
test "reset with preheating" {
var arena_allocator = ArenaAllocator.init(std.testing.allocator);
defer arena_allocator.deinit();
// provides some variance in the allocated data
var rng_src = std.Random.DefaultPrng.init(std.testing.random_seed);
const random = rng_src.random();
var rounds: usize = 25;
while (rounds > 0) {
rounds -= 1;
_ = arena_allocator.reset(.retain_capacity);
var alloced_bytes: usize = 0;
const total_size: usize = random.intRangeAtMost(usize, 256, 16384);
while (alloced_bytes < total_size) {
const size = random.intRangeAtMost(usize, 16, 256);
const alignment: Alignment = .@"32";
const slice = try arena_allocator.allocator().alignedAlloc(u8, alignment, size);
try std.testing.expect(alignment.check(@intFromPtr(slice.ptr)));
try std.testing.expectEqual(size, slice.len);
alloced_bytes += slice.len;
}
}
}
test "reset while retaining a buffer" {
var arena_allocator = ArenaAllocator.init(std.testing.allocator);
defer arena_allocator.deinit();
const a = arena_allocator.allocator();
// Create two internal buffers
_ = try a.alloc(u8, 1);
_ = try a.alloc(u8, 1000);
// Check that we have at least two buffers
try std.testing.expect(arena_allocator.state.buffer_list.first.?.next != null);
// This retains the first allocated buffer
try std.testing.expect(arena_allocator.reset(.{ .retain_with_limit = 1 }));
}