zig/lib/std/heap/SmpAllocator.zig
Andrew Kelley 42dbd35d3e std.heap.SmpAllocator: back to simple free
In practice this is fine because eventually alloc wins the race and
grabs that massive freelist.
2025-02-08 16:46:56 -08:00

223 lines
7.3 KiB
Zig

//! An allocator that is designed for ReleaseFast optimization mode, with
//! multi-threading enabled.
//!
//! This allocator is a singleton; it uses global state and only one should be
//! instantiated for the entire process.
//!
//! ## Basic Design
//!
//! Each thread gets a separate freelist, however, the data must be recoverable
//! when the thread exits. We do not directly learn when a thread exits, so
//! occasionally, one thread must attempt to reclaim another thread's
//! resources.
//!
//! Above a certain size, those allocations are memory mapped directly, with no
//! storage of allocation metadata. This works because the implementation
//! refuses resizes that would move an allocation from small category to large
//! category or vice versa.
//!
//! Each allocator operation checks the thread identifier from a threadlocal
//! variable to find out which metadata in the global state to access, and
//! attempts to grab its lock. This will usually succeed without contention,
//! unless another thread has been assigned the same id. In the case of such
//! contention, the thread moves on to the next thread metadata slot and
//! repeats the process of attempting to obtain the lock.
//!
//! By limiting the thread-local metadata array to the same number as the CPU
//! count, ensures that as threads are created and destroyed, they cycle
//! through the full set of freelists.
const builtin = @import("builtin");
const std = @import("../std.zig");
const assert = std.debug.assert;
const mem = std.mem;
const math = std.math;
const Allocator = std.mem.Allocator;
const SmpAllocator = @This();
const PageAllocator = std.heap.PageAllocator;
cpu_count: u32,
threads: [max_thread_count]Thread,
var global: SmpAllocator = .{
.threads = @splat(.{}),
.cpu_count = 0,
};
threadlocal var thread_index: u32 = 0;
const max_thread_count = 128;
const slab_len: usize = @max(std.heap.page_size_max, 64 * 1024);
/// Because of storing free list pointers, the minimum size class is 3.
const min_class = math.log2(@sizeOf(usize));
const size_class_count = math.log2(slab_len) - min_class;
/// Before mapping a fresh page, `alloc` will rotate this many times.
const max_alloc_search = 1;
const Thread = struct {
/// Avoid false sharing.
_: void align(std.atomic.cache_line) = {},
/// Protects the state in this struct (per-thread state).
///
/// Threads lock this before accessing their own state in order
/// to support freelist reclamation.
mutex: std.Thread.Mutex = .{},
/// For each size class, tracks the next address to be returned from
/// `alloc` when the freelist is empty.
next_addrs: [size_class_count]usize = @splat(0),
/// For each size class, points to the freed pointer.
frees: [size_class_count]usize = @splat(0),
fn lock() *Thread {
var index = thread_index;
{
const t = &global.threads[index];
if (t.mutex.tryLock()) {
@branchHint(.likely);
return t;
}
}
const cpu_count = getCpuCount();
assert(cpu_count != 0);
while (true) {
index = (index + 1) % cpu_count;
const t = &global.threads[index];
if (t.mutex.tryLock()) {
thread_index = index;
return t;
}
}
}
fn unlock(t: *Thread) void {
t.mutex.unlock();
}
};
fn getCpuCount() u32 {
const cpu_count = @atomicLoad(u32, &global.cpu_count, .unordered);
if (cpu_count != 0) return cpu_count;
const n: u32 = @min(std.Thread.getCpuCount() catch max_thread_count, max_thread_count);
return if (@cmpxchgStrong(u32, &global.cpu_count, 0, n, .monotonic, .monotonic)) |other| other else n;
}
pub const vtable: Allocator.VTable = .{
.alloc = alloc,
.resize = resize,
.remap = remap,
.free = free,
};
comptime {
assert(!builtin.single_threaded); // you're holding it wrong
}
fn alloc(context: *anyopaque, len: usize, alignment: mem.Alignment, ra: usize) ?[*]u8 {
_ = context;
_ = ra;
const class = sizeClassIndex(len, alignment);
if (class >= size_class_count) {
@branchHint(.unlikely);
return PageAllocator.map(len, alignment);
}
const slot_size = slotSize(class);
assert(slab_len % slot_size == 0);
var search_count: u8 = 0;
var t = Thread.lock();
outer: while (true) {
const top_free_ptr = t.frees[class];
if (top_free_ptr != 0) {
@branchHint(.likely);
defer t.unlock();
const node: *usize = @ptrFromInt(top_free_ptr);
t.frees[class] = node.*;
return @ptrFromInt(top_free_ptr);
}
const next_addr = t.next_addrs[class];
if ((next_addr % slab_len) != 0) {
@branchHint(.likely);
defer t.unlock();
t.next_addrs[class] = next_addr + slot_size;
return @ptrFromInt(next_addr);
}
if (search_count >= max_alloc_search) {
@branchHint(.likely);
defer t.unlock();
// slab alignment here ensures the % slab len earlier catches the end of slots.
const slab = PageAllocator.map(slab_len, .fromByteUnits(slab_len)) orelse return null;
t.next_addrs[class] = @intFromPtr(slab) + slot_size;
return slab;
}
t.unlock();
const cpu_count = getCpuCount();
assert(cpu_count != 0);
var index = thread_index;
while (true) {
index = (index + 1) % cpu_count;
t = &global.threads[index];
if (t.mutex.tryLock()) {
thread_index = index;
search_count += 1;
continue :outer;
}
}
}
}
fn resize(context: *anyopaque, memory: []u8, alignment: mem.Alignment, new_len: usize, ra: usize) bool {
_ = context;
_ = ra;
const class = sizeClassIndex(memory.len, alignment);
const new_class = sizeClassIndex(new_len, alignment);
if (class >= size_class_count) {
if (new_class < size_class_count) return false;
return PageAllocator.realloc(memory, new_len, false) != null;
}
return new_class == class;
}
fn remap(context: *anyopaque, memory: []u8, alignment: mem.Alignment, new_len: usize, ra: usize) ?[*]u8 {
_ = context;
_ = ra;
const class = sizeClassIndex(memory.len, alignment);
const new_class = sizeClassIndex(new_len, alignment);
if (class >= size_class_count) {
if (new_class < size_class_count) return null;
return PageAllocator.realloc(memory, new_len, true);
}
return if (new_class == class) memory.ptr else null;
}
fn free(context: *anyopaque, memory: []u8, alignment: mem.Alignment, ra: usize) void {
_ = context;
_ = ra;
const class = sizeClassIndex(memory.len, alignment);
if (class >= size_class_count) {
@branchHint(.unlikely);
return PageAllocator.unmap(@alignCast(memory));
}
const node: *usize = @alignCast(@ptrCast(memory.ptr));
const t = Thread.lock();
defer t.unlock();
node.* = t.frees[class];
t.frees[class] = @intFromPtr(node);
}
fn sizeClassIndex(len: usize, alignment: mem.Alignment) usize {
return @max(@bitSizeOf(usize) - @clz(len - 1), @intFromEnum(alignment), min_class) - min_class;
}
fn slotSize(class: usize) usize {
return @as(usize, 1) << @intCast(class + min_class);
}