mirror of
https://codeberg.org/ziglang/zig.git
synced 2025-12-06 13:54:21 +00:00
We already have a LICENSE file that covers the Zig Standard Library. We no longer need to remind everyone that the license is MIT in every single file. Previously this was introduced to clarify the situation for a fork of Zig that made Zig's LICENSE file harder to find, and replaced it with their own license that required annual payments to their company. However that fork now appears to be dead. So there is no need to reinforce the copyright notice in every single file.
251 lines
8.2 KiB
Zig
251 lines
8.2 KiB
Zig
// Ported from go, which is licensed under a BSD-3 license.
|
|
// https://golang.org/LICENSE
|
|
//
|
|
// https://golang.org/src/math/pow.go
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
/// Returns x raised to the power of y (x^y).
|
|
///
|
|
/// Special Cases:
|
|
/// - pow(x, +-0) = 1 for any x
|
|
/// - pow(1, y) = 1 for any y
|
|
/// - pow(x, 1) = x for any x
|
|
/// - pow(nan, y) = nan
|
|
/// - pow(x, nan) = nan
|
|
/// - pow(+-0, y) = +-inf for y an odd integer < 0
|
|
/// - pow(+-0, -inf) = +inf
|
|
/// - pow(+-0, +inf) = +0
|
|
/// - pow(+-0, y) = +inf for finite y < 0 and not an odd integer
|
|
/// - pow(+-0, y) = +-0 for y an odd integer > 0
|
|
/// - pow(+-0, y) = +0 for finite y > 0 and not an odd integer
|
|
/// - pow(-1, +-inf) = 1
|
|
/// - pow(x, +inf) = +inf for |x| > 1
|
|
/// - pow(x, -inf) = +0 for |x| > 1
|
|
/// - pow(x, +inf) = +0 for |x| < 1
|
|
/// - pow(x, -inf) = +inf for |x| < 1
|
|
/// - pow(+inf, y) = +inf for y > 0
|
|
/// - pow(+inf, y) = +0 for y < 0
|
|
/// - pow(-inf, y) = pow(-0, -y)
|
|
/// - pow(x, y) = nan for finite x < 0 and finite non-integer y
|
|
pub fn pow(comptime T: type, x: T, y: T) T {
|
|
if (@typeInfo(T) == .Int) {
|
|
return math.powi(T, x, y) catch unreachable;
|
|
}
|
|
|
|
if (T != f32 and T != f64) {
|
|
@compileError("pow not implemented for " ++ @typeName(T));
|
|
}
|
|
|
|
// pow(x, +-0) = 1 for all x
|
|
// pow(1, y) = 1 for all y
|
|
if (y == 0 or x == 1) {
|
|
return 1;
|
|
}
|
|
|
|
// pow(nan, y) = nan for all y
|
|
// pow(x, nan) = nan for all x
|
|
if (math.isNan(x) or math.isNan(y)) {
|
|
return math.nan(T);
|
|
}
|
|
|
|
// pow(x, 1) = x for all x
|
|
if (y == 1) {
|
|
return x;
|
|
}
|
|
|
|
if (x == 0) {
|
|
if (y < 0) {
|
|
// pow(+-0, y) = +- 0 for y an odd integer
|
|
if (isOddInteger(y)) {
|
|
return math.copysign(T, math.inf(T), x);
|
|
}
|
|
// pow(+-0, y) = +inf for y an even integer
|
|
else {
|
|
return math.inf(T);
|
|
}
|
|
} else {
|
|
if (isOddInteger(y)) {
|
|
return x;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (math.isInf(y)) {
|
|
// pow(-1, inf) = 1 for all x
|
|
if (x == -1) {
|
|
return 1.0;
|
|
}
|
|
// pow(x, +inf) = +0 for |x| < 1
|
|
// pow(x, -inf) = +0 for |x| > 1
|
|
else if ((math.fabs(x) < 1) == math.isPositiveInf(y)) {
|
|
return 0;
|
|
}
|
|
// pow(x, -inf) = +inf for |x| < 1
|
|
// pow(x, +inf) = +inf for |x| > 1
|
|
else {
|
|
return math.inf(T);
|
|
}
|
|
}
|
|
|
|
if (math.isInf(x)) {
|
|
if (math.isNegativeInf(x)) {
|
|
return pow(T, 1 / x, -y);
|
|
}
|
|
// pow(+inf, y) = +0 for y < 0
|
|
else if (y < 0) {
|
|
return 0;
|
|
}
|
|
// pow(+inf, y) = +0 for y > 0
|
|
else if (y > 0) {
|
|
return math.inf(T);
|
|
}
|
|
}
|
|
|
|
// special case sqrt
|
|
if (y == 0.5) {
|
|
return math.sqrt(x);
|
|
}
|
|
|
|
if (y == -0.5) {
|
|
return 1 / math.sqrt(x);
|
|
}
|
|
|
|
const r1 = math.modf(math.fabs(y));
|
|
var yi = r1.ipart;
|
|
var yf = r1.fpart;
|
|
|
|
if (yf != 0 and x < 0) {
|
|
return math.nan(T);
|
|
}
|
|
if (yi >= 1 << (@typeInfo(T).Float.bits - 1)) {
|
|
return math.exp(y * math.ln(x));
|
|
}
|
|
|
|
// a = a1 * 2^ae
|
|
var a1: T = 1.0;
|
|
var ae: i32 = 0;
|
|
|
|
// a *= x^yf
|
|
if (yf != 0) {
|
|
if (yf > 0.5) {
|
|
yf -= 1;
|
|
yi += 1;
|
|
}
|
|
a1 = math.exp(yf * math.ln(x));
|
|
}
|
|
|
|
// a *= x^yi
|
|
const r2 = math.frexp(x);
|
|
var xe = r2.exponent;
|
|
var x1 = r2.significand;
|
|
|
|
var i = @floatToInt(std.meta.Int(.signed, @typeInfo(T).Float.bits), yi);
|
|
while (i != 0) : (i >>= 1) {
|
|
const overflow_shift = math.floatExponentBits(T) + 1;
|
|
if (xe < -(1 << overflow_shift) or (1 << overflow_shift) < xe) {
|
|
// catch xe before it overflows the left shift below
|
|
// Since i != 0 it has at least one bit still set, so ae will accumulate xe
|
|
// on at least one more iteration, ae += xe is a lower bound on ae
|
|
// the lower bound on ae exceeds the size of a float exp
|
|
// so the final call to Ldexp will produce under/overflow (0/Inf)
|
|
ae += xe;
|
|
break;
|
|
}
|
|
if (i & 1 == 1) {
|
|
a1 *= x1;
|
|
ae += xe;
|
|
}
|
|
x1 *= x1;
|
|
xe <<= 1;
|
|
if (x1 < 0.5) {
|
|
x1 += x1;
|
|
xe -= 1;
|
|
}
|
|
}
|
|
|
|
// a *= a1 * 2^ae
|
|
if (y < 0) {
|
|
a1 = 1 / a1;
|
|
ae = -ae;
|
|
}
|
|
|
|
return math.scalbn(a1, ae);
|
|
}
|
|
|
|
fn isOddInteger(x: f64) bool {
|
|
const r = math.modf(x);
|
|
return r.fpart == 0.0 and @floatToInt(i64, r.ipart) & 1 == 1;
|
|
}
|
|
|
|
test "math.pow" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f32, pow(f32, 0.0, 3.3), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, pow(f32, 0.8923, 3.3), 0.686572, epsilon));
|
|
try expect(math.approxEqAbs(f32, pow(f32, 0.2, 3.3), 0.004936, epsilon));
|
|
try expect(math.approxEqAbs(f32, pow(f32, 1.5, 3.3), 3.811546, epsilon));
|
|
try expect(math.approxEqAbs(f32, pow(f32, 37.45, 3.3), 155736.703125, epsilon));
|
|
try expect(math.approxEqAbs(f32, pow(f32, 89.123, 3.3), 2722489.5, epsilon));
|
|
|
|
try expect(math.approxEqAbs(f64, pow(f64, 0.0, 3.3), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, pow(f64, 0.8923, 3.3), 0.686572, epsilon));
|
|
try expect(math.approxEqAbs(f64, pow(f64, 0.2, 3.3), 0.004936, epsilon));
|
|
try expect(math.approxEqAbs(f64, pow(f64, 1.5, 3.3), 3.811546, epsilon));
|
|
try expect(math.approxEqAbs(f64, pow(f64, 37.45, 3.3), 155736.7160616, epsilon));
|
|
try expect(math.approxEqAbs(f64, pow(f64, 89.123, 3.3), 2722490.231436, epsilon));
|
|
}
|
|
|
|
test "math.pow.special" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(pow(f32, 4, 0.0) == 1.0);
|
|
try expect(pow(f32, 7, -0.0) == 1.0);
|
|
try expect(pow(f32, 45, 1.0) == 45);
|
|
try expect(pow(f32, -45, 1.0) == -45);
|
|
try expect(math.isNan(pow(f32, math.nan(f32), 5.0)));
|
|
try expect(math.isPositiveInf(pow(f32, -math.inf(f32), 0.5)));
|
|
try expect(math.isPositiveInf(pow(f32, -0, -0.5)));
|
|
try expect(pow(f32, -0, 0.5) == 0);
|
|
try expect(math.isNan(pow(f32, 5.0, math.nan(f32))));
|
|
try expect(math.isPositiveInf(pow(f32, 0.0, -1.0)));
|
|
//expect(math.isNegativeInf(pow(f32, -0.0, -3.0))); TODO is this required?
|
|
try expect(math.isPositiveInf(pow(f32, 0.0, -math.inf(f32))));
|
|
try expect(math.isPositiveInf(pow(f32, -0.0, -math.inf(f32))));
|
|
try expect(pow(f32, 0.0, math.inf(f32)) == 0.0);
|
|
try expect(pow(f32, -0.0, math.inf(f32)) == 0.0);
|
|
try expect(math.isPositiveInf(pow(f32, 0.0, -2.0)));
|
|
try expect(math.isPositiveInf(pow(f32, -0.0, -2.0)));
|
|
try expect(pow(f32, 0.0, 1.0) == 0.0);
|
|
try expect(pow(f32, -0.0, 1.0) == -0.0);
|
|
try expect(pow(f32, 0.0, 2.0) == 0.0);
|
|
try expect(pow(f32, -0.0, 2.0) == 0.0);
|
|
try expect(math.approxEqAbs(f32, pow(f32, -1.0, math.inf(f32)), 1.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, pow(f32, -1.0, -math.inf(f32)), 1.0, epsilon));
|
|
try expect(math.isPositiveInf(pow(f32, 1.2, math.inf(f32))));
|
|
try expect(math.isPositiveInf(pow(f32, -1.2, math.inf(f32))));
|
|
try expect(pow(f32, 1.2, -math.inf(f32)) == 0.0);
|
|
try expect(pow(f32, -1.2, -math.inf(f32)) == 0.0);
|
|
try expect(pow(f32, 0.2, math.inf(f32)) == 0.0);
|
|
try expect(pow(f32, -0.2, math.inf(f32)) == 0.0);
|
|
try expect(math.isPositiveInf(pow(f32, 0.2, -math.inf(f32))));
|
|
try expect(math.isPositiveInf(pow(f32, -0.2, -math.inf(f32))));
|
|
try expect(math.isPositiveInf(pow(f32, math.inf(f32), 1.0)));
|
|
try expect(pow(f32, math.inf(f32), -1.0) == 0.0);
|
|
//expect(pow(f32, -math.inf(f32), 5.0) == pow(f32, -0.0, -5.0)); TODO support negative 0?
|
|
try expect(pow(f32, -math.inf(f32), -5.2) == pow(f32, -0.0, 5.2));
|
|
try expect(math.isNan(pow(f32, -1.0, 1.2)));
|
|
try expect(math.isNan(pow(f32, -12.4, 78.5)));
|
|
}
|
|
|
|
test "math.pow.overflow" {
|
|
try expect(math.isPositiveInf(pow(f64, 2, 1 << 32)));
|
|
try expect(pow(f64, 2, -(1 << 32)) == 0);
|
|
try expect(math.isNegativeInf(pow(f64, -2, (1 << 32) + 1)));
|
|
try expect(pow(f64, 0.5, 1 << 45) == 0);
|
|
try expect(math.isPositiveInf(pow(f64, 0.5, -(1 << 45))));
|
|
}
|